Top > Search of Japanese Patents > ION CURRENT MEASURING APPARATUS > Specification

Specification :(In Japanese)イオン電流量計測器

Country (In Japanese)日本国特許庁(JP)
Gazette (In Japanese)特許公報(B2)
Patent Number P4797158
Publication number P2006-286548A
Date of registration Aug 12, 2011
Date of issue Oct 19, 2011
Date of publication of application Oct 19, 2006
Title of the invention, or title of the device (In Japanese)イオン電流量計測器
IPC (International Patent Classification) H05H   1/00        (2006.01)
FI (File Index) H05H 1/00 A
Number of claims or invention 6
Total pages 11
Application Number P2005-108081
Date of filing Apr 4, 2005
Exceptions to lack of novelty of invention (In Japanese)特許法第30条第1項適用 特許法第30条第1項適用、REVIEW OF SCIENTIFIC INSTRUMENTS Vol.75、No.10、pp.3631-3633(2004年10月)に発表
Date of request for substantive examination Feb 25, 2008
Patentee, or owner of utility model right (In Japanese)【識別番号】504171134
【氏名又は名称】国立大学法人 筑波大学
Inventor, or creator of device (In Japanese)【氏名】近藤 真史
【氏名】長 照二
【氏名】小波蔵 純子
【氏名】沼倉 友晴
【氏名】時岡 優
Representative (In Japanese)【識別番号】100074631、【弁理士】、【氏名又は名称】高田 幸彦
Examiner (In Japanese)【審査官】藤本 加代子
Document or reference (In Japanese)特開2000-268993(JP,A)
特開平10-162994(JP,A)
M.Hirata et. al.,Novel compact electrostatic ion-current detector using a self-collection method for secondary-electron suppression,REVIEW OF SCIENTIFIC INSTRUMENTS,米国,American Institute of Physics,2004年10月 5日,Vol.75、No.10,pp.3631-3633
Y.Sakamoto et. al.,A differential-spectrum ion-energy analyzer with electrostatic slanted grids,REVIEW OF SCIENTIFIC INSTRUMENTS,米国,American Institute of Physics,1995年11月14日,Vol.66 No.10,pp.4928-4936
Field of search H05H 1/00
JSTPlus(JDreamII)
Scope of claims (In Japanese)【請求項1】
電極板とコレクターとの間に電場を形成し、入射した入射プラズマのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターが、入射プラズマに対して平行に設置され、前記電極板と前記コレクターとの間に静電遮蔽手段が設けられ、前記電極板の外側に磁場形成手段が設けられて、前記電極板と前記コレクターとの間にプラズマ閉じ込め磁場が形成され、前記電極板のコレクター側に粒子軌道偏向部形成され、そしてコレクター側にイオン捕集部形成され、前記磁場によるラーマー回転円運動によって、前記コレクターから発生した二次電子を該コレクターに自己回収すること
を特徴とするイオン電流量計測器。
【請求項2】
請求項1において、前記静電遮蔽手段と前記コレクターの間に二次電子放出抑制電場を形成して、前記ラーマー回転円運動による前記コレクターから放出される二次電子の回転半径を小さく抑えながら、該コレクターに前記ラーマー回転運動により自己回収することを特徴とするイオン電流量計測器。
【請求項3】
請求項1において、前記静電遮蔽手段は、前記電極板と前記コレクターとの間に設けた静電遮蔽グリッドと、該静電遮蔽グリッドを保持する箱形であって、イオンのコレクターとして働く保持ボックスからなることを特徴とするイオン電流量計測器。
【請求項4】
請求項1において、前記コレクターは箱形形状にもしくはL字状に形成されることを特徴とするイオン電流量計測器。
【請求項5】
請求項3において、前記コレクターは箱形形状にもしくはL字状に形成されて、前記保持ボックス内に収納されることを特徴とするイオン電流量計測器。
【請求項6】
請求項5において、前記静電遮蔽グリッドは入射プラズマの方向と平行な磁力線に対し、平行に設置されたワイヤーを等間隔で配設して形成されることを特徴とするイオン電流量計測器。
Detailed description of the invention (In Japanese)【技術分野】
【0001】
本発明は、イオン電流計測器に関し、ミラー型開放端プラズマ閉じ込め装置に使用するイオン電流量計測器に関する。
【背景技術】
【0002】
経済性の高い核融合炉を考えた場合、ミラー磁場からのプラズマの端損失をもっと減少させて、閉じ込め性能をさらに良くする必要がある。この閉じ込め改善策として考え出されたのが、プラズマを電位の壁で閉じ込めるタンデム・ミラー方式である。即ち、ミラー磁場を直線的に並べ、両端のミラー部に高温高密度のプラズマを生成すると、中央ミラー部より高い正の電位が形成される。この電位の壁で中央ミラー部のプラズマを閉じ込める。この電位閉じ込めの原理は世界初のタンデム・ミラー装置ガンマ6で実証され、閉じ込め性能が改善された。
【0003】
タンデム・ミラー型プラズマ閉じ込め装置ガンマ10では、磁場によるプラズマ閉じ込めに加え、電子サイクロトロン加熱(ECH)によりプラズマ閉じ込め電位を形成する事で、プラズマ閉じ込め性能を著しく向上させている。最近では、ECHの径方向パワー分布を制御する事で、電位分布・径方向電場を容易に制御できるミラー装置の最大の利点を生かし、乱れた渦状のプラズマ内構造が高電位生成・強い電場シアdE(r)/drの形成によって制御される事を発明者等は世界に先駆けて示した。加えて、トカマク・ヘリカル等の異なる閉じ込め方式においても、これら電位/電場による閉じ込め効果がプラズマ向上に普遍的・本質的である事が分かってきており、電位/電場の生成物理機構・比例則の究明は、国際熱核融合実験炉を含む装置形式を超えた普遍的で緊要な解明すべき研究課題となっている。
【発明の開示】
【発明が解決しようとする課題】
【0004】
電位生成によるイオン閉じ込め性能を厳密に評価するためには、イオン電流量を厳密に計測することができるイオン電流量計測器が必要となる。発明者等は、イオン電流量を厳密に計測できるイオン電流量計測器として二枚の平行平板構造からなり、一方に正の電圧を印加して入射電子・イオンを電場偏向することで入射電子とイオンを分離し、イオンをコレクターに捕集するようになし、かつ不整電場補正板を設置したイオン電流量計測器を提案し、入射電子等の影響を抑制した数10eVから数1000eVに亘るイオン計測を可能にした。
【0005】
しかしながら、このイオン電流量計測器は、その奥行きが約100mmあり、内部に計測器を複数個設置する事を目的とした計測器アレイの奥行き(50mm)を超えており、計測器アレイへの設置を行う上での小型化が求められている。
【0006】
小型化を進める上では、
(1)磁力線に対し垂直になるような角度をもたせた設置を行うために計測器の奥行きが
45mm以下であること
(2)計測可能なイオンエネルギーの範囲を前述のイオン電流量計測器と同等なものとす
ること
(3)印加電圧を数kVに抑えること
が要求される。
【0007】
本発明は、かかる点に鑑み数keV程度のエネルギーを持つプラズマイオンを計測することができ、印加電圧を小さく抑え、かつ小型化が可能なイオン電流量計測器を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、電極板とコレクターとの間に入射した入射プラズマについてのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターとの空間に電極板側に粒子軌道偏向部を形成し、コレクター側にイオン捕集部を形成する静電遮蔽手段を設けたこと
を特徴とするイオン電流量計測器を提供する。
【発明の効果】
【0009】
本発明によれば、静電遮蔽手段(例えば、静電遮蔽グリッド)を電極板とコレクターとの間に設けることによって電極板側を粒子軌道偏向部とし、コレクター側をイオン捕集部とすることができ、入射電子、二次電子の影響を抑制した正確なイオン計測を可能とした簡易構造であって、電位分布とコレクター構造を最適化する事が可能となり、小型化を可能にしたイオン電流量計測器を提供することができる。
【発明を実施するための最良の形態】
【0010】
本発明の実施例を説明する前に、本実施例が1つの適用例と採用されるタンデム・ミラー型装置ガンマ10(以下ガンマ10装置という。)を説明する。図1は開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10を示す。図1において、開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10は、軸上に並べたコイルにより5つのミラー磁場を発生させてプラズマを磁束管の内部に閉じ込め、両端のプラグバリア部ミラー磁場に設置された中性粒子ビームと電子のマイクロ波を入射してプラズマを加熱してサーマルバリア電位とイオン閉じ込め電位を形成することにより、磁場と電場によるプラズマ閉じ込めを実現し、プラズマ閉じ込め性能を向上させている。
【0011】
次に、図2を用いてタンデム・ミラー型装置ガンマ10の装置端部について説明する。
ガンマ10装置端部においては、プラズマ閉じ込めの磁場と電場を乗り越え、磁力線に沿って流出するプラズマが存在する。この端損失プラズマ中のイオンと電子を分離し、端損失イオンの電流量とエネルギー・スペクトルの時間変化を測定することにより、端損失イオン温度、イオン閉じ込め電位、プラズマ閉じ込め時間を導出し、電位によるプラズマ閉じ込め性能の評価を行うことができる。
【0012】
端損失プラズマは空間的な広がりもって流出し、プラズマの対称性はプラズマ閉じ込め評価に係るので、空間分布測定が出来るように提案の計測器をプラズマ半径方向に数個設置している。装置端部は空間的制約があるため計測器の設置スペースは奥行き5cmのダクト内である。
【0013】
今回の発明に先立ち、原理実証のために設計・開発した計測器である端損失イオン電流量絶対値計測器の例を図3に基づいて説明する。この計測器には、本願発明も含めての、基本原理の一つである「外部磁場(プラズマ閉じ込め磁場)を利用した二次電子自己回収機能」が使用されている。
【0014】
入射プラズマに対し平行に設置した電極板とコレクターの間に電場を形成し、電場によるイオンと電子の軌道偏向によりイオンのみをコレクターに入射させる。プラズマ入射口付近に生じる不整電場による低エネルギー・イオンの散乱を防ぐため、プラズマ入射口上部に不整電場補正板を設置し、数10eVの低エネルギー・イオン計測を可能にした。
【0015】
コレクターを外部磁場と平行に設置することにより、イオン入射に伴いコレクターから発生した二次電子は外部磁場によるローレンツ力により磁力線の回りを回転し、コレクターへ再回収される。この二次電子自己回収機能により、従来の検出器に設置していた二次電子リペラー・グリッドが不要となった。また、斜入射式イオン・エネルギー・スペクトル計測器は、エネルギー分析のためイオンがコレクターに入射するまでに5枚のグリッドを透過している。このため、プラズマ入射口におけるイオン電流量への換算が必要となるが、本計測器はグリッドを全く使用しないため、コレクターで計測される電流量はプラズマ入射口におけるイオン電流量に等しく、計測効率100%の測定器である。
【0016】
しかしながら、数keVのエネルギーを持つイオン計測が必要なため、計測器の奥行きが8.2 cmとなり、端損失イオン計測器アレイのダクト内に設置するためには更なる小型化が必要である。
【0017】
本願実施例は、電極板とコレクターとの間に入射した入射プラズマについてのイオン電流を計測するイオン電流量計測器において、
前記電極板と前記コレクターとの空間に電極板側に粒子軌道偏向部を形成し、コレクター側にイオン捕集部を形成する静電遮蔽手段を設け、
前記電極板にプラス電圧を、そして前記静電遮蔽手段にマイナス電圧を印加する手段を有して、入射イオンと平行方向の外部磁場によりコレクターから発生する二次電子を回収することを特徴とするイオン電流量計測器が構成される。
【0018】
前記静電遮蔽手段は、前記電極板と前記コレクターとの間に設けた静電遮蔽グリッドと、該静電遮蔽グリッドを保持する箱形であって、イオンのコレクターとして働く保持ボックスから形成される。
【0019】
前記コレクターは箱形形状にもしくはL字状に形成される。
前記コレクターは箱形形状にもしくはL字状に形成されて、前記保持ボックス内に収納される。
【0020】
前記静電遮蔽グリッドは入射プラズマの方向と平行な磁力線に対し、平行に設置されたワイヤーを等間隔で配設して形成される。
【実施例1】
【0021】
以下、本発明の実施例を図面に基づいて説明する。
図4は、本発明の実施例であるイオン電流量計測器100の概略構成を一部断面部分を含んで示してある。なお、本願では、イオン電流量計測器は、荷電粒子電流計測器を含んだ概念で使用する。
【0022】
図4において、イオン電流量計測器100は、入射するプラズマの送出部の1部を形成するコリメータ1、コリメータ1に近接して電極板2およびコレクター3並びに静電遮蔽手段4を構成する静電遮蔽グリッド5を備える。静電遮蔽手段4は、電極板2とコレクター3との間の空間に配置される静電遮蔽グリッド5とこの静電遮蔽グリッド5を保持する箱形の保持ボックス6とから構成される。
【0023】
コレクター3は箱形形状に形成され、保持ボックス6の内部に収納され、上面が開いた形状とされる。
【0024】
図5に静電遮蔽グリッド5の詳細を示す。
静電遮蔽グリッド5は、50μmのワイヤー11を3mm間隔でプラズマの入射方向に対し平行に設置している。このため、入射粒子のエネルギー差による入射軌道の違いによるグリッド遮蔽効果の影響がなくなり、粒子のグリッド透過率は全ての入射粒子エネルギーに対して一定となる。静電遮蔽グリッド5による幾何学的透過率は98.3%と高く、またコリメータ1のプラズマ入射口12からコレクター3までに入射粒子が透過する静電遮蔽グリッド5は、静電遮蔽グリッド1枚なので、プラズマ入射口におけるイオン・電子の電流量は複数グリッドが重なる透過率解析が容易な構造の「単一のグリッドの幾何学的透過率」のみで決まり、正確な電流量評価が可能である。
【0025】
図4において、入射プラズマに対して電極板2と静電遮蔽グリッド5を平行に設置し、この間に電場を形成してイオンと電子の軌道偏向を行う。電極板に正の電圧を印加するとイオンが、負の電圧を印加すると電子がグリッド側に偏向される。
【0026】
イオン電流量計測器を小型化するために、入射荷電粒子が偏向するまでの距離を短くし、偏向電場を強くすることを行う。一方、奥行き5 cmのダクト内に多数個設置するので、電極板2からの放電を抑えるため、印加電圧は数kV以下とする。他方でイオンを捕集するときは、コレクター3の前面の電場が強くなると、外部磁場による二次電子自己回収機能よりも電場による二次電子放出の効果が強くなり、二次電子が自己回収されない。更に偏向電場により二次電子放出比も大きくなる。これらの問題点を解決するため、「電場による荷電粒子の軌道偏向」と「外部磁場(プラズマ閉じ込め磁場)を利用しラーマー運動でコレクター3に自ら戻らせるという二次電子自己回収機能」を用い、静電遮蔽グリッド5を配設した。
【0027】
静電遮蔽グリッド5を電極板2とコレクター3の間に設置することにより、計測器内部、すなわち電極板2とコレクター3との間の空間は粒子軌道偏向部と粒子捕集部の2つの領域に分割される。電極板2と静電遮蔽グリッド5の距離を狭くすることにより、低電圧印加でも高電場の発生を可能にできる。一方、粒子捕集部は静電遮蔽グリッド5により偏向電場から遮蔽され、コレクター前面の電場は弱くなるため、二次電子自己回収機能が回復する。電極板2には、例えば1.5kVが、そして静電遮蔽グリッド5には-0.1kVの電圧が印加される。
【0028】
静電遮蔽手段4は箱形で、その内部に箱形のコレクター3を設置している。静電遮蔽グリッド5が電場形成を行うため、荷電粒子の効率的な捕集のためコレクター形状を最適化することが可能となった。
【0029】
図6は、イオン計測の場合に最適化した電圧を印加した場合の電位分布を示す。図7は静電遮蔽グリッド5を設けない場合の電位分布を比較のため示す。また図に寸法をそれぞれ記入した。
【0030】
静電遮蔽グリッド5に0.1kVの電圧を印加することにより、プラズマ入射口付近の電位が0kVとなるため、本実施例では、プラズマ入射口付近に生じる不整電場を補正するために前述の端損失イオン電流量絶対計測器で必要とされた不整電場補正板が不要となった。
【0031】
前述のように、静電遮蔽グリッド5を設置することにより、粒子軌道偏向部と粒子捕集部とに計測器内部が分離された構造となる。粒子軌道の偏向電場は電極板2と静電遮蔽グリッド5の間で形成される。従って、粒子捕集部におけるコレクター形状の変化は全く軌道偏向電場に影響を与えない。軌道偏向電場の役割はコレクター3に粒子を落とし込むことではなく、粒子捕集部に落とし込むことになる。対照的にコレクター3の役割は粒子捕集部に入射した粒子を確実に取り込むことになり、コレクター形状を最適化することが可能になる。
【0032】
静電遮蔽グリッド5に数百ボルトの負電圧を印加すると、入射口付近の電位分布は図6に示されているように、静電遮蔽グリッド5に負電圧を印加することで電位0ラインの位置を入射口付近に移動させることができる。実際には入射口12から電極板2までの距離を調節することで電場配位を最適化しているが、もはや粒子の入射を妨げるような電場配位ではなくなっていることが、この電位分布の図から分かる。
【0033】
以上のように、静電遮蔽グリッド5に負電圧を印加して電極板の位置を調整することで、奥行き数十mmの不整電場補正板を設置する必要のない構造にすることができる。
【0034】
次にコレクター3の形状の詳細について述べる。粒子軌道偏向電場への影響を考えることなくコレクター3の形状を変えることができることは既に述べたが、シミュレーションおよび加工が複雑にならない様に、できる限りシンプルでかつ粒子を確実に捕集できるコレクター形状にした。
【0035】
今、コレクター3が捕集すべき粒子は入射イオンとコレクター3からの二次電子である。また、捕集してはいけない粒子としては、入射電子および、静電遮蔽グリッド5からの二次電子、さらに電極板に当たった入射電子による反跳電子が考えられる。
【0036】
これらを磁場に平行な方向と、垂直な方向の二つに場合分けして考えてみる。
まず、平行な方向についてであるが、捕集すべきイオンの内、keV以上の高エネルギー・イオンは閉じ込め磁場の影響をほとんど受けることなくコレクター3まで到達する。これに対し、数百eV程度のイオンは入射位置によって、偏向電場を受けすぎてコレクターの入射口側に強く偏向されるものと、静電遮蔽グリッド5への印加電圧と閉じ込め磁場の影響で回転運動をしながら計測器後方に流れてしまうものに分けられる。
【0037】
したがって、このように多様に振舞う粒子を確実に捕集するためには“コの字型”の形状を採用することが望ましい。
【0038】
次に、垂直な方向であるが、主に関係ある粒子は磁場の影響で回転する電子である。このうち入射電子は電極板側へと偏向されるので考えなくても良く、また、静電遮蔽グリッド5からの二次電子についても静電遮蔽グリッド5の面積が非常に小さいことと放出された二次電子の回転半径が数mm程度であるため、深さを数十mmに設計すれば影響は無視できる。残りの電子は、コレクター3からの二次電子と、電極板からの反跳電子であるが、両者の回転方向は正反対であることから、コレクター3からの二次電子が集まる側には二次電子を捕集しやすいようにコレクター3を立てた形にし、反跳電子が集まる側にはコレクターがない構造にすればよい。よって、こちらの方向では“L字型”の構造を採用することになる。
【0039】
深さについては、イオンとコレクター3からの二次電子を静電遮蔽グリッド5に-0.1kVを印加した場合に、確実に捕集できる11mmを軌道計算により見い出し、結局、コレクターの形状の深さ11mmの“ちりとり型”となった。最終的なコレクター3はこのように開放されている箇所があるため、排気効果も期待できる。
【0040】
1.5kVを電極板2、静電遮蔽グリッド5には-0.1kVを印加した場合に、50eV、100eV、1keV、3keV、5keVのエネルギーをもつ入射イオンの軌道計算結果を求めた。軌道計算結果によると、不整電場補正板がなくても低エネルギーのイオンを計測できていることが分かった。また、端損失イオンの計測に十分な範囲のエネルギー領域(主に1~2keV)の計測性能も満たせている。
【0041】
磁力線に巻きつきながら磁力線と殆ど水平方向に端損失してくるイオンはイオン電流量計測器100に対し、入射角度(ピッチ角)を持つことになる。その最大の入射角度θmaxは、ガンマ10スロート部磁場強度Bmax=30.13kGと計測器設置位置の磁場強度Bdetector=0.08kGを用いて、

JP0004797158B2_000002t.gif
と与えられる。
【0042】
ピッチ角3度では、コレクター3へ粒子が入射する位置が前後・左右へズレているイオンのすべてをコレクター3に導くことができ、ピッチ角のズレがイオン計測に影響を与えない。コレクター3の形状は、図4からも判るように入射イオンが衝突し易い構成であればよく、箱形にしなくても断面L字状としても効果がある。入射電子の軌道計算は、電極板1.5kV、静電遮蔽グリッド0.1kV、磁場強度80 Gaussの下で行った。各軌道は、エネルギーが0.1keV、1keV、5keVの入射電子のものである。1.5kVの電圧を10mmの距離に印加しているため、強い電場が形成されており、入射してきた電子は強い電場偏向を受け電極板2に入射している。また、5keVを超えるようなエネルギーの電子については計測器後方へと流れて行ってしまう。
【0043】
この軌道計算の結果から、入射電子は、コレクター3に入射することがない。計測器内部に存在する電子として考えられるものの多くは入射電子や二次電子であるが、本実施例では入射電子が電極板2に衝突するため、この他に反跳電子や電極板からの二次電子も考慮する必要がある。入射電子(3keV)が電極板2に衝突した際の反跳電子と二次電子の軌道計算結果について述べる。
【0044】
ここでは放出比の高い100eV程度の低エネルギーの二次電子については回転半径がとても小さいため1keV程度までの電子であれば確実に再回収されていることが分った。また、放出比の低い1keVを超えるエネルギーの電子についても、電極板に再回収されるか、イオン捕集部に設けられた反跳電子を逃すための開き領域から計測器外部へ導かれている。
【0045】
以上のように、本実施例であるイオン電流量計測器100によれば、入射プラズマに平行に設置された電極板と箱形のコレクターの間に静電遮蔽グリッドを一枚挟んだ簡易構造からなり、入射電子・二次電子の影響を抑制した正確なイオン計測が可能である。
【0046】
静電遮蔽グリッド5により、計測器内部の生成電場を二分し(電極板側を粒子軌道偏向部、他方をイオン捕集部)、その機能を明確に分離する事で低電圧化・小型化を実現している。
【0047】
まず、粒子軌道偏向部では、入射プラズマに垂直な電場生成により(1)電子とイオンとを完全に分離し、イオンのみを選択的にイオン捕集部に導く。この際、(2)電極板とグリッドの間に生成される偏向電場の距離を短くする事で、低電圧ながらも強電場を生成できる。
【0048】
一方イオン捕集部では、(3)コレクター板に平行な計測器外部のプラズマ閉じ込め磁場を利用したラーマ-回転運動に、静電遮蔽グリッド(-0.1kV)とコレクター(GND)の間に生成された電子放出抑制電場の効果を加える事により、コレクターより放出する二次電子の回転半径をより小さく抑えてコレクターに再回収させ、二次電子によるノイズを完全に抑制する事が可能である。このとき、(4)外部磁場を利用しているため、計測器の小型化が実現できている。また、(5)イオン捕集部の電場が粒子軌道偏向電場から独立しているため、コレクターの形状を箱形にする事が出来、加えて、(6)静電遮蔽グリッドに負の電圧を印加に伴い、プラズマ入射口直後の領域に電場の荷電粒子を妨げにくい電位分布を形成する事が出来るため、比較的低エネルギーの領域を含む幅広いエネルギー領域(100eV~5keV)のイオンを計測可能としている。
【図面の簡単な説明】
【0049】
【図1】開放端型プラズマ閉じ込め装置であるタンデム・ミラー型装置ガンマ10の概略構成を示す図。
【図2】タンデム・ミラー型装置ガンマ10の装置端部を示す図。
【図3】端損失イオン電流量絶対値計測器の概略構成を示す図。
【図4】本発明の実施例であるイオン電流量計測器の構成を示す図。
【図5】静電遮蔽グリッドの詳細を示す図。
【図6】静電遮蔽グリッドを設置した場合にイオン電流量計測器内部に発生する電位分布を示す図。
【図7】静電遮蔽グリッドを設けない場合の電位分布を示す図。
【符号の説明】
【0050】
1…コリメータ、2…電極板、3…コレクター、4…静電遮蔽手段(装置)、5…静電遮蔽グリッド、6…保持ボックス、11…ワイヤー、12…プラズマ入射口、100…イオン電流量計測器。
Drawing
(In Japanese)【図1】
0
(In Japanese)【図2】
1
(In Japanese)【図3】
2
(In Japanese)【図4】
3
(In Japanese)【図5】
4
(In Japanese)【図6】
5
(In Japanese)【図7】
6