Top > Search of Japanese Patents > METHOD FOR PRODUCING MINUTE STRUCTURE > Specification

Specification :(In Japanese)微小構造体の製造方法

Country (In Japanese)日本国特許庁(JP)
Gazette (In Japanese)特許公報(B2)
Patent Number P4500962
Publication number P2006-035602A
Date of registration Apr 30, 2010
Date of issue Jul 14, 2010
Date of publication of application Feb 9, 2006
Title of the invention, or title of the device (In Japanese)微小構造体の製造方法
IPC (International Patent Classification) B81C  99/00        (2010.01)
B29C  67/00        (2006.01)
B29C  33/40        (2006.01)
FI (File Index) B81C 5/00
B29C 67/00
B29C 33/40
Number of claims or invention 3
Total pages 10
Application Number P2004-217825
Date of filing Jul 26, 2004
Date of request for substantive examination May 29, 2007
Patentee, or owner of utility model right (In Japanese)【識別番号】504182255
【氏名又は名称】国立大学法人横浜国立大学
Inventor, or creator of device (In Japanese)【氏名】向井剛輝
【氏名】八高隆雄
【氏名】丸尾昭二
Representative (In Japanese)【識別番号】100094835、【弁理士】、【氏名又は名称】島添 芳彦
Examiner (In Japanese)【審査官】川端 康之
Document or reference (In Japanese)特開平07-329188(JP,A)
特開平08-127074(JP,A)
特開2002-144300(JP,A)
Field of search B81C99/00
B29C33/40
B29C67/00
Scope of claims (In Japanese)【請求項1】
光造形法により造形した光重合体を用いた微小構造体の製造方法において、
光重合体の三次元構造体を光造形法で任意形態に造形して微小且つ三次元構造の転写型を形成する転写型作製工程と、
無電解メッキによって任意の金属を前記転写型のキャビティ内に充填し、該キャビティ内の金属に前記転写型の三次元輪郭を転写するとともに、前記転写型の表面にメッキ層を形成する転写工程と、
前記転写型の表面に形成されたメッキ層を電解研削によって除去する電解研削工程とを有し、
光造形法で造形可能な三次元構造と実質的に同一の構造を有する微小且つ任意物性の金属製微小構造体を製造することを特徴とする微小構造体の製造方法。
【請求項2】
前記転写型を融解、焼失又は溶解させて、前記キャビティ内の金属を前記転写型から脱型することを特徴とする請求項1に記載の微小構造体の製造方法。
【請求項3】
微小構造体の物性を熱処理又は化学的処理によって改質することを特徴とする請求項1又は2に記載の微小構造体の製造方法。
Detailed description of the invention (In Japanese)【技術分野】
【0001】
本発明は、微小構造体の製造方法に関するものであり、より詳細には、任意の物性を有するマイクロ・ナノオーダーの微小構造体を成形する微小構造体の製造方法に関するものである。
【背景技術】
【0002】
半導体等の表面を加工して三次元構造を得る技術として、リソグラフィが知られている。リソグラフィ装置又はリソグラフィ工程は、半導体ウェハ等に回路パターンを焼付ける装置又は工程として、光・電子デバイスの製造において使用されている。リソグラフィの技術は、微小構造体の製造工程においても使用し得ることから、リソグラフィ技術を応用して三次元構造のマイクロマシンを製造する微小構造体の製造方法が提案されている。例えば、特開平11-28768号公報及び特開平11-61436号公報には、基板上にリソグラフィ工程で二次元パターンの薄膜を形成し、基板及び薄膜をエッチング処理し、エッチング処理後の基板及び薄膜を多層に積層して三次元構造の微小ギア等を製造する微小構造体の製造方法が記載されている。
【0003】
他方、光重合性樹脂原料にレーザー光を照射して三次元構造の光重合体を造形する光造形法が知られており、これを用いた微小構造体の製造方法が提案されている。光造形法は、例えば、特開2003-25295号公報、特開2001-158050号公報及び特開平11-17037号公報等に記載される如く、液状の光重合性樹脂原料にレーザー光を照射し、所望形状の光重合体からなる三次元構造体を成形する加工法として知られている。このような光造形法によれば、レーザー光の集光点や、2光子吸収を正確に制御することにより、比較的複雑な三次元構造を有するマイクロギア等の微小構造体を光重合性樹脂原料より製造することができる。なお、この光重合体は、通常は、光硬化性樹脂と呼ばれている。

【特許文献1】特開平11-28768号公報
【特許文献2】特開平11-61436号公報
【特許文献3】特開2003-25295号公報
【特許文献4】特開2001-158050号公報
【特許文献5】特開平11-17037号
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、リソグラフィ技術を適用した微小構造体の製造方法では、一回のリソグラフィ工程で加工可能な立体構造に限界があり、比較的アスペクト比が高い三次元構造体又は比較的大きな凹凸を有する三次元構造体を製造する場合、或いは、微小且つ複雑な輪郭又は形状の三次元構造体を製造する場合、立体構造に相応して多段階のパターンニング及びエッチングを繰返し行う必要が生じる。このため、リソグラフィ技術を応用してマイクロギア等の微小構造体を製造する場合、製造工程が複雑化し、或いは、製造装置が高額化してしまう。従って、マイクロ・ナノオーダーの微小構造体を任意の材質(例えば、金属)で廉価に量産する上で有効な製造方法が未だ実現していない。
【0005】
これに対し、光造形法を適用した微小構造体の製造方法によれば、レーザー光の制御性を向上させることにより、微細且つ複雑な輪郭を有する光重合体の三次元構造体を高精度に成形することができる。従って、比較的高いアスペクト比又は大きな凹凸の三次元構造体や、微小且つ複雑な輪郭の三次元構造体を光造形法により光重合体で製造することができる。しかしながら、微小構造体の物性は、光重合体の物性に支配されるので、任意の物性、例えば、金属製微小構造体のように高い機械的強度、耐熱性、耐薬品性又は耐蝕性等を有する微小構造体を光重合体で製造することは、現在の技術では極めて困難である。
【0006】
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、光造形法により造形可能な微細且つ複雑な三次元構造を有し、しかも、任意の物性を有する金属製微小構造体をリソグラフィ技術に依存することなく高精度に成形し得る微小構造体の製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、上記目的を達成すべく、 光造形法により造形した光重合体を用いた微小構造体の製造方法において、
光重合体の三次元構造体を光造形法で任意形態に造形して微小且つ三次元構造の転写型を形成する転写型作製工程と、
無電解メッキによって任意の金属を前記転写型のキャビティ内に充填し、該キャビティ内の金属に前記転写型の三次元輪郭を転写するとともに、前記転写型の表面にメッキ層を形成する転写工程と、
前記転写型の表面に形成されたメッキ層を電解研削によって除去する電解研削工程とを有し、
光造形法で造形可能な三次元構造と実質的に同一の構造を有する微小且つ任意物性の金属製微小構造体を製造することを特徴とする微小構造体の製造方法を提供する。
【0008】
本発明の上記構成によれば、三次元構造を有する光重合体の転写型が、リソグラフィ技術による多段階のパターンニング及びエッチング工程を経ることなく、光造形法により高精度に造形される。転写型は、光造形法で造形可能な微細且つ複雑な三次元構造に造形することができる。光重合体の三次元構造は、金属や半導体等の素材に転写され、光造形法で造形した三次元構造と実質的に同一の構造を有する微小且つ任意物性の微小構造体が製造される。微小構造体の物性は、光重合体の物性と直接に関係せず、三次元構造を転写した素材の物性により決定される。従って、使用目的に相応した耐性(機械的強度、耐熱性、耐薬品性、耐蝕性等)を有する微小構造体、例えば、金属製の微小構造体を製造することができる。しかも、このようにして成形された微小構造体は、光造形法の精度及び成形性を反映したものであり、光造形法で造形可能な微細且つ複雑な三次元構造を有する。また、微小構造体を光重合体以外の任意の素材で成形できるので、成形後の微小構造体の物性を熱処理又は化学的処理等によって改質することができる。
【0009】
また、光重合体は、耐熱性及び耐圧性が比較的低く、高温又は高圧の成形工程に適応し難い。しかしながら、比較的低温(60℃以下、好ましくは40~50℃の範囲)且つ低圧の条件下に実施可能な無電解メッキ法は、光重合体の転写型を用いた上記転写工程に好ましく適用し得る。
【0010】
更に、電解研削の特性(電気化学的不働態皮膜に研削工具が到達し、皮膜を剥離することにより、剥離された部分の加工のみが進行する性質)を利用し、転写型表面のメッキ層のみを正確に除去することができる。表面のメッキ層の全部又は一部を除去した結果として、光重合体の転写型と、転写型内に埋込んだ微小構造体とが残留するが、光重合体は、有機溶剤によって溶解し、或いは、熱によって融解又は焼失する性質を一般に有する。従って、転写型を有機溶剤によって溶解させ、或いは、熱によって融解又は焼失(又はガス化)させることにより、キャビティ内の金属を脱型することができる。所望により、脱型後の微小構造体の機械的強度を熱処理等によって向上し、或いは、金属成形体に表面処理を施すことができる。このようにして成形された微小構造体は、光造形法の精度、成形性及び成形自由度と、素材選択の自由度との双方を兼ね備える。このため、従来技術では煩雑な製造プロセスや、高額又は大規模な設備を要していた微細且つ複雑な三次元構造の微小構造体を簡易な製造プロセス及び設備で廉価に製造することができる。
【発明の効果】
【0013】
本発明の上記製造方法によれば、光造形法により造形可能な微細且つ複雑な三次元構造を有し、しかも、任意の物性を有する金属製微小構造体をリソグラフィ技術に依存することなく高精度に成形することができる。
【発明を実施するための最良の形態】
【0014】
以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。
図1及び図2は、光造形法の原理を説明するための斜視図及び縦断面図である。図1には、積層方式の光造形法が示され、図2には、2光子吸収方式の光造形法が示されている。
【0015】
図1に示す積層方式の光造形法では、段階的に昇降可能な昇降ステージ4が用いられ、光重合性樹脂の固化層5が、段階的に積層される。以下、積層方式の光造形法について説明する。
【0016】
光重合性樹脂原料の浴1が、容器(図示せず)内に収容される。図1(A)に示す如く、昇降ステージ4のプラットフォーム(テーブル)が浴1内に浸漬される。プラットフォームの上面と浴1の液面との間には、比較的薄い光重合性樹脂原料の液層が形成される。紫外レーザー光の光源を有するレーザーシステム(図示せず)が、レーザー光2を浴1の光重合性樹脂原料に照射する。レーザーシステムは、紫外レーザー光2を浴1の表層部分に集光し、予め設定された成形断面データに相応してレーザー光2を走査する。液面及び昇降ステージ4の間の液状樹脂原料は、焦点3の変移に従って順次固化し、所定厚の重合体層を形成する。焦点3の位置は、浴1の表層近傍でレーザーシステムの制御下に移動し、所望の三次元構造を有する光重合体がプラットフォーム上に造形される。
【0017】
次いで、昇降ステージ4の駆動装置は、昇降ステージ4のプラットフォームを一層分だけ降下させ、レーザーシステムは、第1層と同様、レーザー光2を走査し、第2層の光重合体層が、レーザーシステムの制御下に第1層の上に造形される。
【0018】
以後、図1(B)及び図1(C)に示す如く、このような操作が繰返し実行され、光重合体5が造形される。全層の硬化が所望の如く完了した後、プラットフォームが最上段まで引き上げられ、造形後の硬化体5が浴1から取り出される。硬化体5は、未重合樹脂原料を除去すべく、エタノール等の溶剤で洗浄される。かくして、所望の光重合体が、後述する光重合体製の母型又はマスター型として造形される。このような光造形法による加工分解能は、一般に約20~200μm程度である。なお、必要に応じて、母型又はマスター型を複数の部品に分割し、上記工程に従って各構成部品を光造形して良い。この場合、光造形した構成部品は、一体的母型又はマスター型を形成するように相互接合される。
【0019】
図2には、光重合性樹脂原料の浴1の内部に集光スポット7を形成し、集光スポットの位置制御によって液状樹脂原料内部に三次元構造の重合体を造形する2光子吸収方式の光造形法が示されている。
【0020】
図2に示す光造形法では、レーザーシステム(図示せず)は、近赤外(又は赤色)フェムト秒パルスレーザーの光源を有し、光源の近赤外(又は赤色)レーザー光2が、短焦点レンズ6を介して光重合性樹脂原料の浴1に照射される。光重合性樹脂原料は、レーザー光2に対して透過性を有し、レーザー光2は、浴1の内部において集光し、集光スポット7を形成する。集光スポット7には、近赤外線を紫外線に変化させる2光子吸収現象が誘起し、焦点位置近傍(焦点スポット7)の光重合性樹脂原料のみが重合する。
【0021】
レーザーシステムは、集光スポット7を浴1内で走査し、所望輪郭の光重合体8を造形する。造形後の光重合体8は、浴1から取出され、エタノール等の溶剤で洗浄される。かくして、所望輪郭の光重合体8が、後述する光重合体製の母型又はマスター型として造形される。このような光造形法による加工分解能は、一般に約0.1~10μm程度である。なお、必要に応じて、母型又はマスター型の構成部品を光造形し、造形後の各構成部品を相互接合して一体的母型又はマスター型を製作しても良い。
【0022】
図3は、本発明による微小構造体製造方法の第1実施形態を示す工程説明図である。
【0023】
図1又は図2に示す光造形法によって造形した母型10が、図3(A)及び図3(B)に示されている。母型10は、光造形法でキャビティ11を形成した光重合体からなる。キャビティ11の輪郭は、図3(G)に示す微小構造体20の輪郭と一致する。
【0024】
図3(C)に示す如く、金属皮膜13が無電解メッキ法で母型10の表面及びキャビティ11内に形成される。
【0025】
無電解メッキ過程では、金属塩(硫酸ニッケル等)、還元剤(次亜リン酸ナトリウム等)、pH調整剤、緩衝剤、錯化剤(クエン酸ナトリウム等)、安定剤、改良剤(鉛イオン)等を配合した無電解メッキの溶液(図示せず)が調製され、母型10は、メッキ浴(溶液)に浸漬される。メッキ浴(溶液)の温度は、60℃以下、好ましくは40~50℃の範囲に設定される。溶液中の金属イオンが、還元剤の酸化時に放出されるイオンによって還元され、メッキ皮膜として析出し、母型10にメッキ皮膜を形成する。このような無電解メッキ法によれば、光重合体製の母型10に任意の厚さの金属皮膜13を均一に形成するとともに、キャビティ11内に金属を充填することができる。
【0026】
無電解メッキ過程の実施例を以下のとおり例示する。
【0027】
脱脂工程:母型10を室温(約20℃)のエタノール浴(500ml)に3分間、浸漬した後、母型10を純水で洗浄する。
【0028】
感受性化工程:塩化第一スズ2gを塩酸500mlに混合して室温(約20℃)の液浴を調製し、母型10を3分間、液浴に浸漬した後、母型10を純水で洗浄する。
【0029】
活性化工程:塩化パラジウム0.3gを混合した塩酸30ml及びイオン交換水270mlの液浴を調製し、室温(約20℃)の液浴に母型10を3分間、浸漬した後、母型10を純水で洗浄する。
【0030】
無電解メッキ工程:硫酸ニッケル21g、グリシン22g、塩化鉛4mg、次亜リン酸ナトリウム20gを純水1リットルに溶解して液浴を調製し、40~50℃に液温を管理した液浴に母型10を1~10分間、浸漬し、母型10をメッキ層で被覆する。
【0031】
このような無電解メッキプロセスで母型10に形成された金属皮膜13は、一般に500~600Hv程度の硬度を有する。母型10は、不要な金属皮膜部分を除去する電解研削プロセス(図3(D))を経た後、母型除去プロセス(図3(E)、(F))において、有機溶剤により溶解し、或いは、熱により融解又は焼失せしめられる。
【0032】
電解研削法は、被加工物を陽極に設定し且つ研削工具を陰極に設定した状態で両者間の狭小間隙に電解作用を生じさせ、被加工物の溶出によって被加工物を研削する研削法として知られている。本発明における電解研削法の採用は、非導電性部分に研削工具が到達すると研削作用が自動的に停止する電解研削法の特性に着目したものであり、図4に示す如く、母型10の表面(上面)を被覆した金属皮膜13の部分が、電解研削プロセスによって研削される。
【0033】
図4(A)には、研削工具50としてメタルボンド回転電極磁石を使用し、固定台51上に無電解メッキ後の母型10を配置した状態が示されている。なお、排気路52は、吸引装置(図示せず)に接続され、母型10は、排気路52を介して作用する吸引圧力によって固定台51上に真空固定される。
【0034】
研削工具50は電源装置53の陰極に接続され、金属皮膜13は、電源装置の陽極に接続される。電解液(例えば、NaNO3等)を噴霧ノズル54から噴霧し、電源装置63によって母型10及び研削工具50に電圧を印加すると、母型10の上面に不働態膜が形成される。図4(B)に示すように切削工具50を水平変位させて母型10の上面を軽く擦過すると、不働態膜が剥離し、図4(C)に示す如く、電解切削が進行する。電解液を噴霧ノズル54から供給しながら電解切削を進行させ、金属皮膜13の厚さを低減させると、図4(D)に示すように母型上面の金属皮膜部分が完全に除去され、この結果、母型10を構成する光重合体が母型上面に露出する。電気的不導体である光重合体の露出によって電解作用は自動的に停止し、微小構造体20の形状・輪郭を有する金属部分20’がキャビティ11内に残留する。
【0035】
電解研削プロセスを終了した母型10が図3(E)に示されている。母型10は、キャビティ10内の金属部分20’を脱型すべく、有機溶剤に浸漬され、或いは、光重合体の融点以上に加熱され、これにより、金属部分20’は光重合体から分離する。脱型した金属部分20’は、所望により、硬化のために熱処理を施され、或いは、表面処理を施され、かくして、図3(F)及び図3(G)に示す微小構造体20が製造される。
【0036】
このようにして製造される微小構造体20として、例えば、図5に示すようなマイクロタービン、複数の歯形部を有するマイクロギア、微小組立治具を構成するマイクロマニピュレータ、或いは、磁気システムを利用した医療用マイクロマシーン等を例示し得る。
【0037】
なお、説明を簡略化すべく、単一のキャビティ11を有する母型10を図示し、説明したが、図6に示す如く複数のキャビティ11を母型10に形成し、複数の微小構造体20を同時に製造するようにしても良い。
【0043】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。
【0045】
例えば、キャビティ11に充填される金属として、チタン等の他の金属を採用しても良い。
【産業上の利用可能性】
【0046】
本発明の上記製造方法は、マイクロ・ナノオーダーのマイクロマシン又は半導体素子等の製造に適用することができる。本発明によれば、低廉、簡易且つ高精度にマイクロマシン又は半導体素子等を製造することが可能となる。
【0047】
殊に、現状では多くのマイクロマシンがシリコンを素材としたものであるのに対し、本発明をマイクロマシンの製造に適用した場合には、マイクロカンチレバーアレイや、ナノ振動子等の金属製マイクロマシンを簡易且つ廉価に製造することが可能となる。これは、殊に医療機器分野等で将来性が期待される金属製マイクロマシンの量産を可能にする。
【0048】
また、本発明は、半導体光素子の製造に適用することができる。例えば、本発明を半導体表面のレンズ加工に適用した場合、上面発光素子に特定の機能を付与することが可能となり、これにより、発光ダイオード(LED)又はエレクトロルミネッセンス(EL)素子の発光効率の向上、或いは、面発光型半導体レーザー(VCSEL)素子又は単一光子光源と光ファイバーケーブルとのカップリング効率の向上、更には、短焦点距離の高精度レンズの製造等が可能となる。
【0049】
更に、本発明を光導波路の形成に適用しても良い。光導波路を用いた回路の形成において、表面に極端な凹凸を形成する必要がある場合であっても、本発明によれば、多段階のリソグラフィに依存せず、複雑な三次元構造を比較的短時間且つ簡易に成形することができる。
【図面の簡単な説明】
【0050】
【図1】段階的に昇降可能な昇降ステージを使用して光重合性樹脂原料の固化層を積層する積層方式の光造形法の工程を示す斜視図である。
【図2】液状の光重合性樹脂原料の内部に集光スポットを形成して液状樹脂原料内部に光重合体を形成する2光子吸収方式の光造形法を示す縦断面図である。
【図3】本発明による微小構造体製造方法の第1実施形態を縦断面図及び斜視図によって示す工程説明図である。
【図4】電解研削工程(図3(C)~(E))の詳細を縦断面図によって示す工程説明図である。
【図5】図3及び図4に示す製造工程によって製造される微小構造体(マイクロタービン)を例示する斜視図である。
【図6】複数のキャビティを形成した母型を例示する斜視図である。
【符号の説明】
【0051】
1 浴(光重合性樹脂原料)
2 レーザー光
3 焦点
4 昇降ステージ(プラットフォーム)
5 光重合体
6 短焦点レンズ
7 集光スポット
8 光重合体
10 母型
11 キャビティ
13 金属皮膜
20 微小構造体
20’金属部分
50 研削工具
51 固定台
52 排気路
53 電源装置
54 噴霧ノズル
Drawing
(In Japanese)【図1】
0
(In Japanese)【図2】
1
(In Japanese)【図3】
2
(In Japanese)【図4】
3
(In Japanese)【図5】
4
(In Japanese)【図6】
5