Top > Search of Japanese Patents > (In Japanese)分光特性測定装置及び分光特性測定方法 > Specification

Specification :(In Japanese)分光特性測定装置及び分光特性測定方法

Country (In Japanese)日本国特許庁(JP)
Gazette (In Japanese)特許公報(B2)
Patent Number P5637488
Date of registration Oct 31, 2014
Date of issue Dec 10, 2014
Title of the invention, or title of the device (In Japanese)分光特性測定装置及び分光特性測定方法
IPC (International Patent Classification) G01N  21/359       (2014.01)
FI (File Index) G01N 21/35 107
Number of claims or invention 8
Total pages 14
Application Number P2014-502333
Date of filing Feb 27, 2013
International application number PCT/JP2013/055228
International publication number WO2013/129519
Date of international publication Sep 6, 2013
Application number of the priority 2012044272
Priority date Feb 29, 2012
Claim of priority (country) (In Japanese)日本国(JP)
Date of request for substantive examination Aug 28, 2014
Patentee, or owner of utility model right (In Japanese)【識別番号】304028346
【氏名又は名称】国立大学法人 香川大学
Inventor, or creator of device (In Japanese)【氏名】石丸 伊知郎
Accelerated examination, or accelerated appeal examination (In Japanese)早期審査対象出願
Representative (In Japanese)【識別番号】110001069、【氏名又は名称】特許業務法人京都国際特許事務所
Examiner (In Japanese)【審査官】横井 亜矢子
Document or reference (In Japanese)特開2008-309706(JP,A)
特開2002-286410(JP,A)
特開2002-514301(JP,A)
Field of search G01N 21/00,21/01
G01N 21/17-21/61
A61B 3/00-3/18
A61B 5/06-5/22
A61B 10/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
Scope of claims (In Japanese)【請求項1】
a)固定反射部及び可動反射部と、
b)測定対象から発せられた測定光を前記固定反射部と前記可動反射部に入射させる入射光学系と、
c)前記固定反射部によって反射された測定光と前記可動反射部によって反射された測定光の干渉光を形成する結像光学系と、
d)前記測定光の干渉光強度を検出する測定光検出部と、
e)前記可動反射部を移動させることにより得られる前記測定光の干渉光強度変化に基づき前記測定光のインターフェログラムを求める処理部と、
f)前記測定光の波長帯域の一部である狭帯域の波長の参照光を、前記入射光学系を通して前記固定反射部と前記可動反射部に入射させる参照光入射手段と、
g)前記固定反射部によって反射された参照光と前記可動反射部によって反射された参照光の、前記結像光学系によって形成される干渉光強度を検出する参照光検出部と、
h)前記可動反射部を移動させることにより前記参照光検出部で検出される前記参照光の干渉光強度変化の振幅、及び前記測定光のうち前記参照光と同じ波長の測定光と前記参照光の位相差に基づき前記測定光のインターフェログラムを補正し、補正後のインターフェログラムに基づき前記測定光のスペクトルを求める演算処理部と
を備えることを特徴とする分光特性測定装置。
【請求項2】
請求項1に記載の分光特性測定装置において、
前記参照光入射手段が、
光源と、
該光源から出射された光の1次回折光を参照光として前記入射光学系に入射させる反射型の回折格子と
から構成されていることを特徴とする分光特性測定装置。
【請求項3】
請求項2に記載の分光特性測定装置において、
光透過性部材から成る板状の窓部であって、その両面のうちの一方が前記測定対象が載置される載置面であり、他方が光照射面である窓部を備え、
前記回折格子が、前記光照射面の一部の領域に設けられ、
前記光源が、前記光照射面の全体に光を照射し、且つ、該光照射面に光が照射されたときに発生する正反射光が前記入射光学系に入射しない角度で該光照射面に光を照射するものであることを特徴とする分光特性測定装置。
【請求項4】
請求項1に記載の分光特性測定装置において、
前記参照光入射手段が、
前記測定光の波長帯域の一部である狭帯域の光を出射する光源と、
前記光源から出射された光を反射して前記入射光学系に入射させる反射膜と
から構成されていることを特徴とする分光特性測定装置。
【請求項5】
a)測定対象から発せられた測定光を入射光学系によって固定反射部と可動反射部に入射させ、
b)前記固定反射部によって反射された測定光と前記可動反射部によって反射された測定光の干渉光を形成させ、
c)前記可動反射部を移動させることにより得られる前記測定光の干渉光強度変化に基づき前記測定光のインターフェログラムを求め、
d)前記測定光の波長帯域の一部である狭帯域の波長の参照光を、前記入射光学系を通して固定反射部及び可動反射部に入射させ、
e)前記固定反射部によって反射された参照光と前記可動反射部によって反射された参照光の干渉光強度を検出し、
f)前記可動反射部を移動させることにより得られる参照光の干渉光強度変化の振幅、及び前記測定光のうち前記参照光と同じ波長の測定光と前記参照光の位相差に基づき前記測定のインターフェログラムを補正し、補正後のインターフェログラムに基づき前記測定光のスペクトルを求めることを特徴とする分光特性測定方法。
【請求項6】
請求項5に記載の分光特性測定方法において、
光源からの光を回折格子に照射することにより該回折格子において生じる1次回折光を参照光として前記入射光学系に入射させることを特徴とする分光特性測定方法。
【請求項7】
請求項6に記載の分光特性測定方法において、
光透過性部材から成る板状の窓部であって、その両面のうちの一方が前記測定対象が載置される載置面であり、他方の面が光照射面である窓部の、該光照射面の一部の領域に前記回折格子を設け、
前記光源が、前記光照射面の全体に光を照射し、且つ、該光照射面に光が照射されたときに発生する正反射光が前記入射光学系に入射しない角度で該光照射面に光を照射することを特徴とする分光特性測定方法。
【請求項8】
請求項5に記載の分光特性測定方法において、
前記測定光の波長帯域の一部である狭帯域の光を光源から反射膜に照射し、該反射膜で反射された光を参照光として前記入射光学系に入射させることを特徴とする分光特性測定方法。
Detailed description of the invention (In Japanese)【技術分野】
【0001】
本発明は、血糖や血中コレステロール等の生体成分を非侵襲で測定したり、半導体の欠陥評価に用いたりすることができる分光特性測定装置及び分光特性測定方法に関する。
【背景技術】
【0002】
糖尿病や高脂血症等、さまざまな病気において、血中グルコース(血糖)や血中コレステロールといった血液中の生体成分の管理はその予防及び治療のために重要である。しかしながら、血液中の生体成分を測定するためには、通常、微量ながら血液を採取しなければならず、苦痛を伴う。また、採血部位の消毒や消耗品の処理などの煩わしい作業が必要であるため、例えば予防目的で生体成分を測定するための採血を日常的に行うことは敬遠される。
【0003】
これに対して、血液を採取せずに生体成分を測定する非侵襲の測定装置が提案されている。その一つとして、特許文献1には、生体の被検部位に光を照射し、その結果、該被検部位の内部の生体成分から発せられる光(物体光)の分光特性から生体成分を求める手法が記載されている。
【0004】
特許文献1に記載の手法では、生体成分を光学的に構成する各輝点から生じる物体光束の干渉現象を利用することにより生体成分のインターフェログラムを求め、このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得する。具体的には、各輝点から生じる透過光や拡散・散乱光等の物体光を、対物レンズを介して位相シフタである固定ミラー部と可動ミラー部に導き、これら2つのミラー部から反射される物体光束を結像面において干渉させる。可動ミラー部はピエゾ素子などにより移動されるようになっており、該可動ミラー部の移動量に応じた位相差が固定ミラー部と可動ミラー部から反射される物体光束に付与され、それに伴い干渉光の強度が変化して、いわゆるインターフェログラムを形成する。このインターフェログラムをフーリエ変換することにより物体光の分光特性(スペクトル)を取得することができる。
【先行技術文献】
【0005】

【特許文献1】特開2008-309707号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
病気の予防や治療のためには、血液に含まれる血糖(グルコース)やコレステロール等の生体成分の濃度を測定することが有効である。予防の際には、これらの特定成分の所定母集団の平均濃度値に対する特定個人の濃度値が有意であり、治療の際には、患者の濃度値の変化を継続的に測定することが有効である。いずれの場合においても、それらの差や変化は微小なものであるため、濃度値の測定は高精度に行う必要がある。
血液中の血糖(グルコース)やコレステロール等の生体成分の濃度値は、血管に光を照射してそれを透過した光、又は、反射した光の中の、それら特定成分が吸収又は反射する(1又は複数の)特定波長の光の強度を測定することにより求めることができる。しかし従来の方法では、光源光量の変化や温度・湿度等の周囲環境の変化、可動ミラー部の移動誤差等の外乱によって測定光の強度が変化してしまい、特定成分の濃度を高精度に測定することができないという問題があった。
このような問題は、半導体基板に光を照射したときに該半導体基板から発せられる光の分光特性から、半導体基板の微小な欠陥を検出する場合等にも生じる。
【0007】
本発明が解決しようとする課題は、外乱の影響を抑えて測定対象の分光特性をを高精度に測定することができる分光特性測定装置及び分光特性測定方法を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するために成された本発明の分光特性測定装置は、
a)固定反射部及び可動反射部と、
b)測定対象から発せられた測定光を前記固定反射部と前記可動反射部に入射させる入射光学系と、
c)前記固定反射部によって反射された測定光と前記可動反射部によって反射された測定光の干渉光を形成する結像光学系と、
d)前記測定光の干渉光強度を検出する測定光検出部と、
e)前記可動反射部を移動させることにより得られる前記測定光の干渉光強度変化に基づき前記測定光のインターフェログラムを求める処理部と、
f)前記測定光の波長帯域の一部である狭帯域の波長の参照光を、前記入射光学系を通して前記固定反射部と前記可動反射部に入射させる参照光入射手段と、
g)前記固定反射部によって反射された参照光と前記可動反射部によって反射された参照光の、前記結像光学系によって形成される干渉光強度を検出する参照光検出部と、
h)前記可動反射部を移動させることにより前記参照光検出部で検出される前記参照光の干渉光強度変化の振幅、及び前記測定光のうち前記参照光と同じ波長の測定光と前記参照光の位相差に基づき前記測定光のインターフェログラムを補正し、補正後のインターフェログラムに基づき前記測定光のスペクトルを求める演算処理部と
を備えることを特徴とする。
【0009】
ここで、「狭帯域の波長の光」とは、ピーク波長を中心とする±30nmの波長範囲、或いはこれよりも狭い波長範囲の光をいい、半導体レーザ光源(レーザダイオード)から出射される単一波長レーザ光も狭帯域の波長の光に該当する。
【0010】
上記構成の分光特性測定装置においては、
前記参照光入射手段を、光源と、該光源から出射された光の1次回折光を参照光として前記入射光学系に入射させる反射型の回折格子とから構成することができる。
【0011】
さらに、光透過性部材から成る板状の窓部であって、その両面のうちの一方が前記測定対象が載置される載置面であり、他方が光照射面である窓部を備え、
前記回折格子が、前記光照射面の一部の領域に設けられ、
前記光源が、前記光照射面の全体に光を照射し、且つ、該光照射面に光が照射されたときに発生する正反射光が前記入射光学系に入射しない角度で該光照射面に光を照射するように構成すると良い。
【0012】
このような構成においては、窓部の光照射面のうち回折格子を除く領域に照射された光は、窓部を通って測定対象に至る。その結果、測定対象から散乱光や蛍光等の測定光が発せられ、該測定光は窓部を通して入射光学系に至る。一方、窓部の光照射面のうち回折格子に照射された光は、その波長及び入射角、並びに回折格子の格子周期等によって決まる出射角の1次回折光が参照光として入射光学系に入射する。つまり、測定光と参照光を発生させるための光源を共通化することができるため、装置の小形化を図ることができる。
また、上記構成では、光源からの光を窓部の光照射面に照射させたときに生じる正反射光(0次光)は入射光学系に入射せず、1次回折光を参照光として入射光学系に入射させた。正反射光に比べると1次回折光成分の光量は非常に小さいが、該1次回折光と同様に目的成分から発する散乱光成分の光量も非常に小さいため、測定光と参照光のバランスをとることができる。
【0013】
また、上記構成の分光特性測定装置においては、
前記参照光入射手段を、前記測定光の波長帯域の一部である狭帯域の光を出射する光源と、前記光源から出射された光を反射して前記入射光学系に入射させる反射膜とから構成することもできる。
【0014】
また、本発明の分光特性測定方法は、
a)測定対象から発せられた測定光を入射光学系によって固定反射部と可動反射部に入射させ、
b)前記固定反射部によって反射された測定光と前記可動反射部によって反射された測定光の干渉光を形成させ、
c)前記可動反射部を移動させることにより得られる前記測定光の干渉光強度変化に基づき前記測定光のインターフェログラムを求め、
d)前記測定光の波長帯域の一部である狭帯域の波長の参照光を、前記入射光学系を通して固定反射部及び可動反射部に入射させ、
e)前記固定反射部によって反射された参照光と前記可動反射部によって反射された参照光の干渉光強度を検出し、
f)前記可動反射部を移動させることにより得られる参照光の干渉光強度変化の振幅、及び前記測定光のうち前記参照光と同じ波長の測定光と前記参照光の位相差に基づき前記測定のインターフェログラムを補正し、補正後のインターフェログラムに基づき前記測定光のスペクトルを求めることを特徴とする。

【0015】
上記生体成分測定方法においては、
光源から回折格子に照射することにより該回折格子において生じる1次回折光を参照光として前記入射光学系に入射させると良い。
【0016】
さらに、光透過性部材から成る板状の窓部であって、その両面のうちの一方が前記測定対象が載置される載置面であり、他方の面が光照射面である窓部の、該光照射面の一部の領域に前記回折格子を設け、
前記光源が、前記光照射面の全体に光を照射し、且つ、前記光照射面に光が照射されたときに発生する正反射光が前記入射光学系に入射しない角度で該光照射面に光を照射するようにすると良い。
【0017】
また、上記構成の分光特性測定装置においては、前記測定光の波長帯域の一部である狭帯域の光を光源から反射膜に照射し、該反射膜で反射された光を参照光として前記入射光学系に入射させるようにしても良い。
【発明の効果】
【0018】
本発明では、測定対象から発せられる散乱光や蛍光などの測定光を2つの光に分割すると共にこれら2つの測定光に位相差を与え、該2つの測定光の干渉現象を利用して測定光のインターフェログラムを求め、このインターフェログラムをフーリエ変換することにより測定光スペクトル(分光特性)を取得する。例えば血糖値を測定する場合は、血糖(グルコース)に光が照射されることにより発生する散乱光の分光特性を測定することにより、血液中の血糖値の量を非侵襲的に測定することができる。このとき、血糖から発せられる散乱光は非常に微弱であり、可動反射部の移動誤差や光源光量の変動などの外乱によって血糖の分光特性が変化する。そこで、本発明では、測定光と同様に参照光を入射光学系によって固定反射部と可動反射部に入射させ、これらの反射部によって2つの反射光に分割して干渉光を形成させ、この干渉光強度変化の振幅と位相差に基づき測定光のインターフェログラムを補正するようにしたため、測定光の分光特性を精度良く求めることができる。
【図面の簡単な説明】
【0019】
【図1】本発明の第1実施例に係る血糖値センサの全体構成を示す概略図。
【図2】検出部の受光面を示す図。
【図3】干渉光強度変化とインターフェログラム、分光特性の説明図。
【図4】回折格子から対物レンズに入射する1次回折光の波長、回折角の説明図。
【図5】回折格子からの1次回折光を示す正面図(a)及び側面図(b)並びに1次回折光を立体的に示す図(c)。
【図6】測定光のインターフェログラム(a)と1次回折光の干渉光強度変化(b)の関係を示す図。
【図7】測定結果を示す図。
【図8】本発明の第2実施例に係る血糖値センサに用いられる窓部を示す斜視図(a)及び上面図(b)。
【図9】回折格子の第2突条部から対物レンズに入射する1次回折光の波長、回折角の説明図。
【図10】回折格子からの1次回折光を示す正面図(a)及び側面図(b)。
【図11】本発明の第3実施例に係る血糖値センサの全体構成を示す概略図。
【発明を実施するための形態】
【0020】
以下、本発明を血糖値センサに適用した具体的な実施例について図面を参照して説明する。
【実施例1】
【0021】
図1は本実施例に係る血糖値センサ10の全体構成を示している。血糖値センサ10は、矩形箱状のケーシング12と、このケーシング12の外周側面の一つ、例えば上面に固定された矩形板状の窓部14と、ケーシング12内に収容された分光測定部16とから構成されている。
【実施例1】
【0022】
ケーシング12は、例えばプラスチックや金属などの光を透過しない材料から作製されている。窓部14は、光透過性を有する材料から作製されており、後述するように、その上面に測定対象である例えば手の指先が載置される。従って、窓部14の上面が載置面となる。一方、ケーシング12内に位置する窓部14の下面である光照射面の一部には回折格子が形成されている。この実施例では、窓部14の対向する2辺に沿って延びる2個の回折格子20、21が形成されている。以下の説明では、窓部14の光照射面のうち2個の回折格子20、21が形成された領域を参照光領域、それ以外の領域を測定光領域とも呼ぶ。各回折格子20、21は、いずれも2辺と平行な複数本の突条部から成る。本実施例では、これら突条部の間隔は 1.1 μmに設定されている。
【実施例1】
【0023】
分光測定部16は、光源161、対物レンズ162、位相シフタ163、結像レンズ164、検出部165から構成されている。本実施例では、対物レンズ162及び結像レンズ164がそれぞれ入射光学系及び結像光学系に相当する。対物レンズ162は窓部14の光照射面と対向配置されている。一方、結像レンズ164は、対物レンズ162と光軸が直交する向きに配置されている。
【実施例1】
【0024】
光源161は、皮膚の透過性が良い、波長が1μm付近の近赤外光を出射する光源が用いられており、その出射光が窓部14の光照射面に照射されたときに正反射光が対物レンズ162に入射せず、且つ、前記回折格子20、21に照射されたときに生成される1次回折光が対物レンズ162に入射するような向きに配置されている。回折格子20、21からの1次回折光は参照光として利用されるものであり、従って、本実施例では、光源161及び回折格子20、21から参照光入射手段が構成される。
検出部165は例えば16×16画素の二次元CCD(Charge Coupled Device)カメラから構成されており、結像レンズ164の結像面に検出部165の受光面165aが位置するように配置されている。
【実施例1】
【0025】
図2は検出部165の受光面165aを概略的に示す図である。なお、ここでは便宜上画素数を10×10として説明する。この図2に示すように、検出部165の受光面165aには多数の画素が配置されており、そのうち上端の20個(2×10)及び下端の20個の画素にそれぞれ回折格子20及び回折格子21で生じた1次回折光(参照光)が結像する。従って、これらの画素が参照光検出部となる。なお、参照光検出部は、上端及び下端の左右両側に位置する2個ずつの画素、計4個の画素を除いた16個づつの画素としても良い。一方、受光面165aのうち参照光検出部を除く画素に測定光が結像する。従って、これらの画素が本発明の測定光検出部となる。なお、実際は窓部14の載置面に載置された指先の画像Fが示す部分に位置する画素に測定光が結像することになる。
【実施例1】
【0026】
また、詳しくは後述するように、検出部165の検出信号は処理部42に入力されるようになっている。処理部42は、検出部165からの検出信号からインターフェログラムを求める。このインターフェログラムは演算処理部43によって数学的にフーリエ変換され、その結果、測定光の波長毎の相対強度である分光特性(スペクトル)が得られる。
【実施例1】
【0027】
位相シフタ163は、対物レンズ162と結像レンズ164の間に配置されている。位相シフタ163は固定ミラー部31及び可動ミラー部32、及び可動ミラー部32を移動させる駆動機構33から構成されている。固定ミラー部31及び可動ミラー部32がそれぞれ本発明の固定反射部及び可動反射部に相当する。固定ミラー部31及び可動ミラー部32は、いずれも対物レンズ162の光軸及び結像レンズ164の光軸に対して45°の角度で傾斜する矩形状の反射面を有している。両ミラー部の反射面は、非常に僅かな隙間をおいて並べて配置されている。
【実施例1】
【0028】
駆動機構33は、例えば静電容量センサを具備する圧電素子から構成されており、制御部40からの信号を受けて、光軸に対する反射面の傾斜角度を45°に維持した状態で可動ミラー部32を矢印A方向に移動させる。このような構成により、固定ミラー部31に対する可動ミラー部32の相対位置が変化し、固定ミラー部31で反射された光束、及び可動ミラー部32で反射された光束の間に位相差が付与される。
【実施例1】
【0029】
具体的には、可動ミラー部32の対物レンズ162或いは結像レンズ164の光軸方向の移動量は、可動ミラー部32の矢印A方向の移動量の1/√2となる。また、固定光束と可動光束の間に相対的な位相変化を与える光路長差は、可動ミラー部32の光軸方向の移動量の2倍となる。
【実施例1】
【0030】
次に、上記構成の血糖値センサ10を用いて被検者の手の指先の血液中の血糖(グルコース)を測定する場合の動作について説明する。
まず、被検者の手の指先を窓部14の載置面に載置する。ここでは、指先を窓部14の載置面に載置するだけでなく、載置面に強く押し当てることとする。このように、強く押し当てることにより、測定中、対物レンズ162の合焦位置を、指先の内部の所定の位置(深度)に維持することができる。なお、指先は必ずしも強く押さえつけなければならないものではなく、例えば指先の表面に近い領域の血管中の成分等を検出する場合には載置面上に軽く乗せる程度としてもよい。
【実施例1】
【0031】
指先を窓部14の載置面に押し当てた状態で光源161からの近赤外光を窓部14の光照射面に照射する。すると、窓部14の測定光領域に照射された近赤外光は、窓部14を通して指先に至り、指先の皮膚を透過して指先内部の様々な生体成分によって散乱される。生体成分によって散乱された光は、再び指先の皮膚を経て窓部14からケーシング12内に至り、対物レンズ162に入射する。
【実施例1】
【0032】
指先内部から発せられた測定光としての散乱光は様々な方向に拡がりながら対物レンズ162に到達し、平行光束となって位相シフタ163の固定ミラー部31及び可動ミラー部32の表面全体に至る。つまり、散乱光の一部は固定ミラー部31の反射面で反射され、残りの散乱光は可動ミラー部32の反射面で反射され、それぞれ、結像レンズ164に入射する。なお、以下の説明では、固定ミラー部31で反射された散乱光を固定散乱光束、可動ミラー部32で反射された散乱光を可動散乱光束とも呼ぶ。
【実施例1】
【0033】
結像レンズ164に入射した固定散乱光束及び可動散乱光束は、検出部165の受光面165aにおいて結像し、干渉像を形成する。このとき、手の指先の内部から発せられる散乱光には、様々な波長の光が含まれることから、可動ミラー部32を移動させて可動散乱光束と固定散乱光束の光路長差を変化させることにより、インターフェログラムと呼ばれる結像強度変化(干渉光強度変化)の波形が得られる、このインターフェログラムを数学的にフーリエ変換することにより分光特性を取得できる。図3に各波長の光の干渉強度変化(a)、インターフェログラム(b)、分光特性(c)を示す。
また、本実施例の血糖値センサ10では、指先内部のうち対物レンズ162の特定深度に位置する合焦面から発せられた散乱光のみが検出部165の受光面165aにおいて結像し、合焦面以外から生じた光は検出部165の受光面165aで結像しない。従って、合焦面のみに深度を限定した指先内部の分光特性を得ることができる。
【実施例1】
【0034】
一方、窓部14の参照光領域に照射された近赤外光は回折格子20、21で反射される。本実施例では、光源161から窓部14の光照射面に照射された光の正反射光(図1において、符「L0」で示す光)は対物レンズ162に入射しない。これに対して、対物レンズ162の開口数、回折格子20、21の格子周期(突条部の間隔)、入射角θin、出射角θoutによって決まる特定波長λの1次回折光が対物レンズ162に入射する。

【実施例1】
【0035】
本実施例では、図4に示すように、格子周期(突条部の間隔)d=1.1μmの回折格子に対して、光源161からの近赤外光が入射角45deg.で入射するように構成されている。また、開口数N.A.=0.24(開口角=14deg.)、焦点距離=20mm、レンズ口径g=φ10mmの対物レンズ162が用いられている。このとき、対物レンズ162に入射する短波長側の最小回折角θminは31deg.、その波長λminは0.566μmとなり、長波長側の最大回折角θmaxは59deg.、その波長λmaxは0.943μmとなる。また、本実施例では、検出部165として、検出波長域が0.9μm~1.7μmのInGaAsカメラを用いた。従って、対物レンズ162に入射した1次回折光のうち検出部165で検出される波長域は非常に狭い波長域(0.9μm~0.943μm)となる。
【実施例1】
【0036】
また、図5に示すように、回折格子20、21からの1次回折光は、回折格子20、21の幅方向に広がって対物レンズ162に到達し(図5(a)の正面図参照)、回折格子20、21の延びる方向では平行光束として対物レンズ162に到達する(図5(b)の側面図参照)。つまり、図5の(c)に示すような四角錐台形状の1次回折光が対物レンズ162に到達する。この結果、対物レンズ162に入射した1次回折光は、固定ミラー部31と可動ミラー部32の境界付近に、光源161の大きさと同等の幅を有する帯状の光として至り、一部は固定ミラー部31の反射面で反射され、残りは可動ミラー部32の反射面で反射されて結像レンズ164に入射する。なお、以下の説明では、固定ミラー部31で反射された1次回折光を固定回折光、可動ミラー部32で反射された1次回折光を可動回折光とも呼ぶ。
【実施例1】
【0037】
結像レンズ164に入射した固定回折光及び可動回折光は、検出部165の受光面165aにおいて結像し、干渉像を形成する。このとき、可動ミラー部32を移動させて固定回折光と可動回折光の光路長差を変化させることにより干渉光強度変化が得られる。上述したように、固定回折光及び可動回折光は波長域が非常に狭く、ほぼ単一波長の光といえるため、ここで得られる干渉光強度変化の形状は単純な余弦波となる。
【実施例1】
【0038】
窓部14を通して指先に照射される光と、回折格子20、21で1次回折光を発生させる光は同一の光源から出射される光であるため、光源161から発せられる光強度に揺らぎが生じた場合は、測定光(散乱光)の干渉光強度変化及び1次回折光の干渉光強度変化の両方がその影響を受ける。また、窓部14から検出部165に至るまでの測定光と1次回折光の光路が共通であるため、この共通光路上に外乱が発生した場合、測定光の干渉光強度変化及び1次回折光の干渉光強度変化の両方が外乱の影響を受ける。
【実施例1】
【0039】
そこで、本実施例の演算処理部43は、1次回折光の干渉光強度変化の振幅、及び該1次回折光と該1次回折光と同じ波長の測定光との位相差から測定光のインターフェログラムを補正し、補正後のインターフェログラムをフーリエ変換して分光特性を求める。例えば図6の(a)に示すような測定光のインターフェログラムと、図6の(b)に示すような回折光の干渉光強度変化が得られたとすると、測定光のインターフェログラムの干渉光強度を1次回折光の干渉光強度変化の振幅に対する比を用いることにより該インターフェログラムを補正する。また、1次回折光と測定光の位相ずれ量だけ測定光のインターフェログラムの位相をシフトすることにより、該インターフェログラムを補正する。これにより、光源161の光強度の揺らぎ、及び光路上に発生した外乱の影響を抑えることができ、測定光のインターフェログラムを精度良く求めることができる。
【実施例1】
【0040】
図7に、本実施例の血糖値センサ10を用いて試験管内のグルコース濃度を測定した結果を示す。図7に示すように、理論値と完全に一致しないものの、濃度に依存して吸収率が高くなる傾向を示し、グルコース濃度と吸収率の良好な相関が得られた。また、一般的なヒトの血液中のグルコース濃度は約100mg/dlであるが、このような低濃度においてもグルコース濃度を検出可能であることが分かった。
【実施例2】
【0041】
図8は本発明の第2実施例に係る血糖値センサ10に用いられる窓部14の構成を示している。この第2実施例では、窓部14の光照射面に設けた回折格子20、21を、該窓部14の一辺と平行な第1突条部と、該突条部と直交する第2突条部から構成した点が第1実施例と異なる。
【実施例2】
【0042】
本実施例では、第1突条部の間隔(格子周期)は上記第1実施例の回折格子と同じにした。一方、第2突条部の間隔(回折周期)d=3.9μmとした。対物レンズ161の開口数、焦点距離、レンズ口径、並びに光源161からの近赤外光の光照射面に対する入射方向は第1実施例と同じである。従って、第1突条部からは第1実施例と同じ1次回折光が発生する。

【実施例2】
【0043】
一方、第2突条部と近赤外光の入射方向が平行であることから、図9に示すように、この近赤外光は第2突条部に対して入射角0deg.で入射する。このため、回折格子20,21の第2突条部では入射光を挟んで左右対称な1次回折光が出射される。具体的には、対物レンズ162に入射する短波長側の最小回折角θminは±8.3deg.、その1次回折光の波長λminは0.566μmとなり、長波長側の最大回折角θmaxは±14deg.、その1次回折光の波長λmaxは0.943μmとなる。従って、第2突条部における1次回折光についても、検出波長域が0.9μm~1.7μmのInGaAsカメラから成る検出部165で検出される波長範囲は0.9μm~0.943μmとなる。
【実施例2】
【0044】
このような構成により本実施例では、図10に示すように、回折格子20、21からの1次回折光は、回折格子20、21の第1突条部及び第2突条部の両方が延びる方向に広がって対物レンズ162に到達する。この結果、対物レンズ162に入射した1次回折光は、第1実施例の血糖値センサ10よりも幅広の光が、固定ミラー部31と可動ミラー部32の境界部分に至る。このため、1次回折光を2分割し易くなる。また、第1実施例に比べると、1次回折光の光強度を強くすることができる。
【実施例2】
【0045】
なお、参照光として用いる1次回折光の光強度と測定対象から発せられる測定光(散乱光)の光強度が近いほど、測定光のインターフェログラムを精度良く補正することができる。従って、測定光の光強度に応じて、回折格子20、21の形成領域の大きさや回折格子を一組の突条部から構成するか二組の突条部から構成するか適宜決めるとよい。
【実施例3】
【0046】
図11は本発明の第3実施例に係る血糖値センサ50を示している。この第3実施例では、1次回折光に代えてレーザ光を参照光に用いた点が第1実施例と異なる。具体的には、この血糖値センサ50では、窓部14の光照射面に回折格子に代えて反射膜52、53が設けられている。また、ケーシング12内にはレーザ光源54が光源161と並べて配置されており、該レーザ光源54からの光はレンズ55、ミラー56及びビームスプリッタ57を介して窓部14の反射膜52に入射するようになっている。レーザ光源54は、光源161から出射される光の波長帯域の一部の狭帯域のレーザ光(単一波長レーザ光)を出射する。
【実施例3】
【0047】
反射膜52に入射したレーザ光源54からの単一波長レーザ光は該反射膜52によって反射され、対物レンズ162に入射して参照光として利用される。
【実施例3】
【0048】
一方、光源161からの近赤外光は、反射膜53と、窓部14の光照射面のうち反射膜52、53を除く領域にそれぞれ入射する。光照射面のうち反射膜52、53を除く領域に入射した光源161からの近赤外光は、窓部14を通して指先に至り、指先内部の様々な生体成分によって散乱される。この散乱光は測定光として指先の皮膚を経て窓部14からケーシング12内に至り、対物レンズ162に入射する。一方、反射膜53に入射した光源161からの近赤外光は該反射膜53で反射され、対物レンズ162に入射し、参照光として利用される。反射膜53から対物レンズ162に入射する光は正反射光であるため、指先内からの散乱光に比べて強度が非常に大きい。そのため、散乱光強度とのバランスを取るために、反射膜53には減光フィルタ(図示せず)が取り付けられており、対物レンズ162には、強度が弱い反射光が入射するようになっている。なお、レーザ光源54から出射されるレーザ光も、散乱光に合わせて弱い強度に設定されている。
【実施例3】
【0049】
上記構成においては、反射膜52によって反射され、対物レンズ162に入射するレーザ光、及び反射膜53によって反射され、対物レンズ162に入射する近赤外光は、それぞれ位相シフタ163によって2つずつに分割された後、結像レンズ164に入射する。結像レンズ164に入射したレーザ光は検出部165の受光面165aにおいてほぼ同一点に集光し、干渉する。一方、結像レンズ164に入射した近赤外光は検出部165の受光面165aにおいて結像し、干渉像を形成する。
【実施例3】
【0050】
このとき、可動ミラー部32を移動させることにより、参照光であるレーザ光及び近赤外光のそれぞれについて干渉光強度変化が得られる。レーザ光は単一波長であるため、上述の第1の実施例で説明した1次回折光と同様、干渉光強度変化は単純な余弦波となる。窓部14から検出部165に至るまでの測定光(散乱光)とレーザ光の光路は共通であるため、この共通光路上に外乱が発生した場合、測定光及びレーザ光の干渉光強度変化の両方が外乱の影響を受ける。従って、本実施例では、レーザ光の干渉光強度変化の振幅、及び、該レーザ光の測定光の位相差から測定光のインターフェログラムを補正する。これにより、光路上の外乱の影響を抑えることができる。
【実施例3】
【0051】
一方、反射膜53による近赤外光の反射光は測定光(散乱光)と同様、多波長であるため、その干渉光強度変化はインターフェログラムとなる。測定光及び反射膜53からの反射光は、共に光源161の光強度の揺らぎの影響を受ける。また、測定光及び反射膜53からの反射光は窓部14から検出部165に至るまでの光路が共通であるため、この共通光路上に外乱が発生した場合、測定光及び反射膜53からの反射光の両方が外乱の影響を受ける。そこで、本実施例では、反射光のインターフェログラムの位相と強度を用いて散乱光のインターフェログラムの位相や強度を補正する。これにより、光路上の外乱の影響及び光源161の光の揺らぎの影響を抑えることができる。
このように、本実施例では、光源161からの光及びレーザ光源54からの光の両方を参照光として用いたため、測定光のインターフェログラムを一層精度良く求めることができる。
【実施例3】
【0052】
なお、本発明は上記した実施例に限定されるものではなく、適宜の変更が可能である。例えば、対物レンズを光軸方向に移動させる駆動機構を設けても良い。このように構成すれば、対物レンズの合焦位置、即ち測定対象内部の測定点の深度を変更することができる。
【実施例3】
【0053】
本発明は、半導体等の基板に光を照射したときに該基板から発せられる反射光(測定光)の分光特性から、基板上の微小欠陥や異物等の有無を検出する装置にも適用できる。
【実施例3】
【0054】
固定ミラー部及び可動ミラー部には、ステンレス板の表面を鏡面研磨した反射板や、ガラス基板の表面にアルミニウム等の金属膜をコーティングした反射板を用いることができる。
【実施例3】
【0055】
本発明は、マイケルソン干渉計を用いてインターフェログラムを測定し、それをフーリエ変換することによりスペクトル(分光特性)を求める、フーリエ変換赤外分光光度計(FT-IR)にも適用可能である。
【実施例3】
【0056】
上記の実施例では一つの参照光を用いてインターフェログラムを補正したが、複数の参照光を用いても良い。
【符号の説明】
【0057】
10、50…血糖値センサ
12…ケーシング
14…窓部
16…分光測定部
161…光源
162…対物レンズ
163…位相シフタ
164…結像レンズ
165…検出部
165a…受光面
20、21…回折格子
31…固定ミラー部
32…可動ミラー部
33…駆動機構
40…制御部
42…処理部
43…演算処理部
52、53…反射膜
Drawing
(In Japanese)【図1】
0
(In Japanese)【図2】
1
(In Japanese)【図3】
2
(In Japanese)【図4】
3
(In Japanese)【図5】
4
(In Japanese)【図6】
5
(In Japanese)【図7】
6
(In Japanese)【図8】
7
(In Japanese)【図9】
8
(In Japanese)【図10】
9
(In Japanese)【図11】
10