【非特許文献1】M.H. Akonda,C.A. Lawrence,B.M. Weager, Composites: Part A 43,pp.79-86,(2012) 【非特許文献2】Ruriko MONOBE, Kazuya OKUBO, Toru FUJII,33rd SAMPE Europe International Technical Conference & Forum 2012 (SEICO 12): Strong Features to Support the Lift-off ,pp.315-320,(2012) 【非特許文献3】炭素繊維協会,強化プラスチックス,Vol. 52,No.10,pp.485-491,(2006) 【非特許文献4】Mohamad Anas Nahil,Paul T. Williams,Journal of Analytical and Applied Pyrolysis,Vol.91,pp. 67-75,(2011) 【発明の概要】 【発明が解決しようとする課題】 【0008】 ところで、一般に、バージン炭素繊維は、サイジング剤としてゴム変性したエポキシ樹脂などを用い、紡糸工程において連続的にサイジング処理され、1000本以上の繊維が束ねられて、取り扱い性のよいものとなっている。 すなわち、炭素繊維同士が互いにくっ付き素線化することがない。したがって、母材樹脂に分散させる分散工程においても炭素繊維の飛散が抑えられる。 【0009】 一方、再生炭素炭繊維は、焼却処理や過熱水蒸気を用いて処理したものは勿論、化学的処理法によって処理したものまで、バージン炭素繊維に付着していたサイジング剤が焼失している。 したがって、再生炭素繊維は、不活性な炭素表面が露出しており、例えば、射出成形用コンパウンドとしてポリプロピレンと複合しても得られる成形体の引っ張り強度や曲げ強度などが十分とは言えない。 また、サイジング剤が無いため、解繊の際に飛散しやすく、飛散した再生炭素繊維が空中に浮遊し、その結果、工場内では作業環境の悪化や漏電など思わぬ事故を招くおそれがある。 【0010】 本発明は、上記事情に鑑みて、再生炭素繊維を用いた強度的に優れた再生炭素繊維強化プラスチック成形体の製造方法を提供することを第1の目的とし、加えて再生炭素繊維の飛散を防止できて安全性の高い再生炭素繊維強化プラスチック成形体の製造方法を提供することを第2の目的としている。