TOP > 国内特許検索 > 合金ナノ粒子の製造方法 > 明細書

明細書 :合金ナノ粒子の製造方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第6404823号 (P6404823)
登録日 平成30年9月21日(2018.9.21)
発行日 平成30年10月17日(2018.10.17)
発明の名称または考案の名称 合金ナノ粒子の製造方法
国際特許分類 B22F   9/24        (2006.01)
B22F   1/00        (2006.01)
B01J  37/16        (2006.01)
B01J  35/02        (2006.01)
B01J  23/46        (2006.01)
B01J  37/36        (2006.01)
B82Y  30/00        (2011.01)
B82Y  40/00        (2011.01)
C12P   3/00        (2006.01)
FI B22F 9/24 E
B22F 1/00 K
B01J 37/16
B01J 35/02 H
B01J 23/46 311A
B01J 37/36
B82Y 30/00
B82Y 40/00
C12P 3/00 Z
請求項の数または発明の数 3
全頁数 12
出願番号 特願2015-540437 (P2015-540437)
出願日 平成26年9月9日(2014.9.9)
国際出願番号 PCT/JP2014/073741
国際公開番号 WO2015/049959
国際公開日 平成27年4月9日(2015.4.9)
優先権出願番号 2013207465
優先日 平成25年10月2日(2013.10.2)
優先権主張国 日本国(JP)
審査請求日 平成29年8月2日(2017.8.2)
特許権者または実用新案権者 【識別番号】505127721
【氏名又は名称】公立大学法人大阪府立大学
発明者または考案者 【氏名】小西 康裕
【氏名】斎藤 範三
個別代理人の代理人 【識別番号】110001195、【氏名又は名称】特許業務法人深見特許事務所
審査官 【審査官】酒井 英夫
参考文献・文献 特開2012-107294(JP,A)
特開2007-113116(JP,A)
特開2010-162442(JP,A)
小西康裕,金属イオン還元細菌を用いるバイオミネラリゼーションによる貴金属ナノ粒子触媒の創製,触媒,日本,一般社団法人 触媒学会,2013年 8月10日,第55巻 第4号,p.232-238
Baharak Hosseinkhani, Lina Sveidai Sobjerg, Amelia-Elena Rotaru, Giti Emtiazi, Troels Skydstrup, Rik,Microbially Supported Synthesis of Catalytically Active Bimetallic Pd-Au Nanoparticles,Biotechnology and Bioengineering,米国,WILEY,2012年 1月,Vol.109, No.1,p.45-52
調査した分野 B22F 9/18
B22F 9/24
C22B 11/00
C12P 9/00
B01J 23/38
特許請求の範囲 【請求項1】
白金、パラジウム、ロジウムおよび金から選択される複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、
1つの粒子中に複数種の前記貴金属を含有する合金ナノ粒子を析出させるバイオ還元工程を含み、
前記金属イオン還元細菌は、シワネラ アルゲ(Shwanell algae)およびシワネラ オネイデンシス(Shwanell Oneidensis)の少なくともいずれかであり、
前記電子供与体はギ酸塩であり、前記電子供与体の初期濃度は100~200mMである、合金ナノ粒子の製造方法。
【請求項2】
前記バイオ還元工程の温度は5~35℃である、請求項1に記載の製造方法。
【請求項3】
前記バイオ還元工程の後に、
超音波破壊または化学的破壊で菌体を破壊することにより、前記金属イオン還元細菌と前記合金ナノ粒子とを分離する、分離工程を含む、請求項1または2に記載の製造方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、合金ナノ粒子の製造方法、それを用いて製造された合金ナノ粒子、および、それを含む触媒に関する。
【背景技術】
【0002】
近年、大半のガソリン車が、三元触媒コンバータを使用した排ガス浄化システムを搭載している。この三元触媒コンバータは、一酸化炭素(CO)、チッソ酸化物(NOx)、未燃焼の炭化水素を、二酸化炭素、チッソ、水に変換して、ガソリンエンジンからの排ガスを浄化する。
【0003】
触媒コンバータは、基本構造としてハニカム(モノリス)構造を有しており、ハニカム構造体の表面には触媒コーティングが施されている。触媒コーティングを行う際は、まず、ウォッシュコート(触媒担体保持材)の薄膜でハニカムの表面を被覆し、そのウォッシュコート上に触媒を被覆する。触媒としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの白金族金属(PGM:Platinum Group Metals)を含む貴金属系微粒子が用いられる。
【0004】
従来の貴金属系微粒子を用いた排ガス浄化用触媒の製造方法としては、例えば、貴金属系微粒子を含有するコロイド溶液等を混合し、高温で加熱(焼成)する方法が知られている(例えば、特許文献1:特開2011-143339号公報)。しかし、このような方法は、工程数が多く煩雑であり、加熱のために多くのエネルギーを消費し、高温に耐え得る特別な設備が必要であるといった問題があった。
【0005】
また、アスコルビン酸等の化学薬品を用いて二金属ナノ粒子(例えば、Pdからなる核の表面にPtが析出してなるコアーシェル構造の金属ナノ粒子)を合成する方法が幾つか報告されている(例えば、非特許文献1:Byungkwon Lim et al.,Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction,Science,324,1302,2009年)。しかし、この方法も工程数が多く煩雑であるという問題があった。
【0006】
一方で、嫌気性雰囲気で白金族元素と電子供与体等を含む溶液中に鉄還元細菌を添加すると、鉄還元細菌の金属イオン還元力により、鉄還元細菌の微生物細胞表面に単一種の白金族元素からなるナノ粒子が析出することが知られている(例えば、特許文献2:特開2010-162442号公報、特許文献3:特開2011-113788号公報)。しかしながら、鉄還元細菌等の微生物を用いて、1つの粒子中に複数種の貴金属を含むナノ粒子(複合貴金属ナノ粒子)を製造する方法については、これまで知られていなかった。
【先行技術文献】
【0007】

【特許文献1】特開2011-143339号公報
【特許文献2】特開2010-162442号公報
【特許文献3】特開2011-113788号公報
【0008】

【非特許文献1】Byungkwon Lim et al.,Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction,Science,324,1302,2009年
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述のとおり、従来の貴金属系微粒子を用いた排ガス浄化用触媒の製造方法は、工程数が多く煩雑であり、製造効率が低いといった問題があった。
【0010】
そこで、本発明の目的は、低エネルギーおよび低環境負荷型の簡易な処理により、効率的に複合貴金属ナノ粒子を製造する方法を提供することである。
【課題を解決するための手段】
【0011】
本発明は、複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、
1つの粒子中に複数種の前記貴金属を含有する複合貴金属ナノ粒子を析出させるバイオ還元工程を含む、複合貴金属ナノ粒子の製造方法である。
【0012】
前記複合貴金属ナノ粒子は、複数種の前記貴金属からなる合金であることが好ましい。また、前記貴金属は、白金族金属および金から選択されることが好ましい。前記白金族金属は、白金、パラジウムおよびロジウムから選択されることが好ましい。また、前記バイオ還元工程の温度は常温であることが好ましい。
【0013】
前記バイオ還元工程の後に、
超音波破壊または化学的破壊で菌体を破壊することにより、前記金属イオン還元細菌と前記複合貴金属ナノ粒子とを分離する、分離工程を含むことが好ましい。
【0014】
また、本発明は、上記の製造方法によって製造される、複合貴金属ナノ粒子にも関する。該複合貴金属ナノ粒子の平均粒径は1~100nmであることが好ましい。
【0015】
また、本発明は、上記の複合貴金属ナノ粒子を含む、触媒にも関する。
【発明の効果】
【0016】
本発明の製造方法によれば、低エネルギーおよび低環境負荷型の簡易な処理により、効率的に複合貴金属ナノ粒子を製造することができる。また、本発明の製造方法で製造された複合貴金属ナノ粒子は、単一金属からなるナノ粒子に比べて触媒機能が大幅に優れており、触媒として好適に用いることができる。
【図面の簡単な説明】
【0017】
【図1】実施例1における金属イオン還元細菌の透過電子顕微鏡写真による撮影像である。
【図2】図1の撮影像の部分拡大図である。
【図3】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくRh(ロジウム)のマッピング図である。
【図4】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくPd(パラジウム)のマッピング図である。
【図5】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくPt(白金)のマッピング図である。
【図6】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくC(炭素)のマッピング図である。
【図7】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくN(窒素)のマッピング図である。
【図8】図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づくO(酸素)のマッピング図である。
【図9】試験例1における各ナノ粒子の化学反応速度(相対値)を示すグラフである。
【発明を実施するための形態】
【0018】
<複合貴金属ナノ粒子の製造方法>
本発明は、複合貴金属ナノ粒子の製造方法に関する。複合貴金属ナノ粒子とは、1つの粒子中に複数種の貴金属を含有するナノ粒子である。

【0019】
複合貴金属ナノ粒子は、複数種の貴金属からなる合金であることが好ましい。合金とは、単一の金属元素からなる純金属とは異なり、複数種の金属元素から成るか、あるいは、少なくとも1種の金属元素と少なくとも1種の非金属元素から成る金属様のものである。合金には、金属が他の金属に溶け込んでいる固溶体、結晶レベルでは複数種の金属がそれぞれ独立している共晶合金、原子のレベルで複数種の金属が一定割合で結合した金属間化合物などが含まれる。ただし、本発明の複合貴金属ナノ粒子は、合金に限らず、ある金属の核が他の金属の層で覆われた構造(コア-シェル構造)を有する金属ナノ粒子、複数種の貴金属粒子の複合体などであってもよい。

【0020】
貴金属は、白金族金属および金(Au)から選択されることが好ましい。白金族金属としては、例えば、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、ルテニウム(Ru)、イリジウム(Ir)が挙げられる。白金族金属は、工業触媒で使用されるPt、PdおよびRhから選択されることが好ましい。

【0021】
複合貴金属ナノ粒子に含まれる具体的な貴金属の組み合わせとしては、例えば、(1)Pt、PdおよびRh、(2)PtおよびPd、(3)PtおよびRh、または、(4)AuおよびPdが挙げられる。

【0022】
[バイオ還元工程]
本発明の複合貴金属ナノ粒子の製造方法は、
複数種の貴金属のイオンを含有する原料溶液中に、金属イオン還元細菌および電子供与体(例えばギ酸ナトリウム)を添加し、
前記貴金属のイオンを金属イオン還元細菌によって還元することで、複合貴金属ナノ粒子を析出させるバイオ還元工程を基本的に含む。

【0023】
バイオ還元工程では、原料溶液中に含まれる貴金属イオンを、金属イオン還元細菌を用いて還元することにより複合貴金属ナノ粒子を析出させる。具体的には、例えば、貴金属を含む原料溶液、電子供与体(例えばギ酸ナトリウム)、および、金属イオン還元細菌の懸濁液を嫌気性雰囲気中、常温で混合することにより、液中の白金族金属イオンが還元されて白金族金属が菌体内に析出する。

【0024】
(原料溶液)
原料溶液は、貴金属のイオンを含有する溶液であれば特に限定されないが、例えば、複数種の貴金属化合物を含む溶液(例えば、塩化白金、塩化パラジウムおよび塩化ロジウムの溶液、または、塩化パラジウムおよび塩化金の溶液)を用いることができる。また、原料溶液として、例えば、貴金属を含む触媒含有ウォッシュコートから得た浸出貴液(貴金属を主成分として含む溶液)等を用いることもできる。

【0025】
原料溶液のpHは、特に限定されないが、金属イオン還元細菌の培養条件と同様であることが好ましく、例えば、pH6~pH7である。

【0026】
(金属イオン還元細菌)
金属イオン還元細菌とは、金属イオンを還元する能力を有する細菌である。金属イオン還元細菌は、電子供与体から電子の供給を受けて(有機物を酸化して発生する電子を利用して)、金属イオンを金属に還元し、析出させる機能を持つ。例えば、自然界の水環境の底泥などに生息する通性嫌気性細菌が挙げられる。工業的応用では、病原性細菌ではなく安全性が確保できる点、また培養の栄養源コストが低く、増殖が速い点(低コストで迅速に菌体を供給可能)が、大きなメリットとなる。

【0027】
金属イオン還元細菌としては、例えば、シワネラ属(Shewanella algae:シワネラ アルゲ(以下、「S.algae」という):ATCC(American Type Culture Collection)51181株、Shewanella oneidensis:シワネラ オネイデンシス:ATCC700550株など)、ゲオバクター属(代表種:Geobacter metallireducens:ゲオバクター メタリレデューセンス:TCC53774株)、デスルフォモナス属(代表種:Desulfuromonas palmitatis:デスルフォモナス パルミタティス:ATCC51701株)、デスルフォムサ属(代表種:Desulfuromusa kysingii:デスルフォムサ キシンリ:DSM(Deutsche Sammlung von Mikroorganismen und Zellkulturen)7343株)、ペロバクター属(代表種:Pelobacter venetianus:ペロバクター ベネティアヌス:ATCC2394株)、フェリモナス属(Ferrimonas balearica:フェリモナス バレアリカ:DSM9799株)、エアロモナス属(Aeromonas hydrophila:エアロモナス ヒドロフィラ:ATCC15467株)、スルフロスピリルム属(代表種:Sulfurospirillum barnesii:スルフロスピリルム バーネシイ:ATCC700032株)、ウォリネラ属(代表種:ウォリネラ スシノゲネス:Wolinella succinogenes:ATCC29543株)、デスルフォビブリオ属(代表種:Desulfovibrio desulfuricans:デスルフォビブリオ デスルフリカンス:ATCC29577株)、ゲオトリクス属(代表種:Geothrix fermentans:ゲオトリクス フェルメンタンス:ATCC700665株)、デフェリバクター属(代表種:Deferribacter thermophilus:デフェリバクター テルモフィルス:DSM14813株)、ゲオビブリオ属(代表種:Geovibrio ferrireducens:ゲオビブリオ フェリレデューセンス:ATCC51996株)、ピロバクルム属(代表種:Pyrobaculum islandicum:テルモプロテウス アイランディカム:DSM4184株)、テルモトガ属(代表種:Thermotoga maritima:テルモトガ マリティマ:DSM3109株)、アルカエグロブス属(代表種:Archaeoglobus fulgidus:アルカエグロブス フルギダス:ATCC49558株)、ピロコックス属(代表種:Pyrococcus furiosus:ピロコックス フリオサス:ATCC43587株)、ピロディクティウム属(代表種:Pyrodictium abyssi:ピロディクティウム アビーシイ:DSM6158株)が挙げられる。好ましくはシワネラ属であり、特に好ましくはS.algaeである。これらの金属イオン還元細菌は、嫌気性細菌(通性嫌気性細菌)である。

【0028】
本発明で用いる金属イオン還元細菌は、当該細菌に適した培地を用いて、増殖および維持を行うことができる。増殖および維持のための培地のpHは、好ましくは、pH6~pH7である。培地は、電子供与体および電子受容体を含有することが好ましい。具体的な培地としては、例えば、pHが7.0で、電子供与体として乳酸ナトリウム(32mol/m)と、電子受容体としてFe(III)イオン(56mol/m)とを含むクエン酸第二鉄培地(ATCC No.1931)を用いることができる。

【0029】
例えば、S.algaeは、pHが7.0で、電子供与体として乳酸ナトリウム(32mol/m)、電子受容体としてFe(III)イオン(56mol/m)を含むクエン酸第二鉄培地(ATCC No.1931)を用いて、嫌気性雰囲気下で回分培養して増殖させ、維持することができる。鉄イオンの塩は、この例では、クエン酸塩であるが、使用する培地、使用する金属イオン還元細菌の種類により、適宜選択すればよい。また、S.algaeは、好気培養することもできる。好気培養に用いる培地としては、例えば、TSB(トリプトソイブロス)液体培地(pH7.2)が挙げられる。

【0030】
なお、S.algaeは、バイオセ-フティが「レベル1」と安全であるとともに、培養するための栄養源コストが低く抑えられ、増殖が速いことから、安全かつ低コストで迅速に菌体を供給できる、工業的応用に適した微生物である。

【0031】
一方、バイオ還元工程のための培地(例えば、原料溶液と金属イオン還元細菌の懸濁液との混合液)のpHは、好ましくは、pH6~pH7である。

【0032】
また、前記バイオ還元工程の温度は、常温(例えば、5~35℃)であることが好ましく、より好ましくは20~30℃である。金属イオン還元細菌を添加した後は、基本的には放置しておけば、貴金属イオンが還元され複合貴金属ナノ粒子が菌体中(特に細胞膜付近)に析出する。本発明では、このような低エネルギーおよび低環境負荷型の簡易な処理により、複合貴金属ナノ粒子を製造することができる。ただし、必要に応じて撹拌等の操作を行ってもよい。

【0033】
本工程で用いる金属イオン還元細菌の数は、特には制限されない。一般的に細胞数が多いほど、処理時間が短くなる。金属イオン還元細菌の懸濁液と原料溶液との混合液中の細菌数(細胞濃度)は、好ましくは1.0×1014cells/m~1.0×1016cells/m、より好ましくは1.0×1015cells/m~8.0×1015cells/mである。

【0034】
金属イオン還元細菌の懸濁液の調製においては、例えば、まず指数増殖末期に達した金属イオン還元細菌培養液を、窒素ガスにより嫌気状態にしたグローブボックス内で採取し、遠心分離機で集菌する。集菌した菌液を、水(蒸留水、イオン交換水、純水などを含む)を用いて所定の濃度に調整する。

【0035】
原料溶液と金属イオン還元細菌の懸濁液との混合液中には、電子供与体が添加されていることが好ましい。電子供与体としては、例えば、有機酸塩が挙げられる。有機酸塩としては、例えば、炭素数1~7のカルボン酸塩(ギ酸塩、酢酸塩など)、芳香族カルボン酸塩(脂式カルボン酸塩(脂肪酸塩)、安息香酸塩など)、オキソカルボン酸塩(ピルビン酸塩など)、その他のカルボン酸塩(乳酸塩など)が挙げられる。また、有機酸塩以外の電子供与体としては、例えば、アルコール(エタノールなど)、不飽和芳香族(トルエンフェノールなど)、水素ガス(分子状水素)が挙げられる。なお、アルコールおよび不飽和脂肪酸の炭素数は、好ましくは1~7である。

【0036】
好適な電子供与体は、使用する金属イオン還元細菌の種類により異なり、適宜選択すればよい。例えば、S.algaeについては、有機酸塩を電子供与体として好適に用いることができる。電子供与体の混合液中の初期濃度は、好ましくは10~1000mMであり、より好ましくは20~200mMである。

【0037】
バイオ還元工程の処理時間は、特に制限はされないが、処理効率を考慮し、原料溶液中の貴金属の濃度と使用する金属イオン還元細菌の数を調整して、複合貴金属ナノ粒子の製造効率が高くなるように調整すればよい。なお、一般的な製造効率の観点から、回分操作の処理時間は3時間以下であることが好ましい。

【0038】
[分離工程]
本発明の複合貴金属ナノ粒子の製造方法は、バイオ還元工程の後に、さらに、金属イオン還元細菌と複合貴金属ナノ粒子とを分離する、分離工程を含むことが好ましい。

【0039】
金属イオン還元細菌と複合貴金属ナノ粒子とは、例えば、菌体を遠心分離やろ過等により液中から分離した後に、種々公知の方法で分離することができる。菌体からの複合貴金属ナノ粒子の分離は、超音波破壊や、アルカリ溶液(NaOH水溶液など)を用いた化学的破壊で菌体を破壊することにより実施することが好ましい。一方、焼成等により菌体等の有機物を除去する方法は、貴金属合金等からなる複合貴金属ナノ粒子同士が結合することで、粒子径が大きくなってしまう恐れがあるため、望ましくない。

【0040】
上記の製造方法によって製造される複合貴金属ナノ粒子の平均粒径は1~100nmであることが好ましく、より好ましくは1~10nmである。これにより、触媒として使用される際の反応表面積を大きくすることができ、高い活性を有する触媒を得ることができる。また、従来の方法では、特に10nm以下のナノ粒子を得ることは難しかった。なお、ここでいう平均粒径とは、例えば、高分解能STEM像より求められる、平均粒径である。

【0041】
<触媒>
本発明の複合貴金属ナノ粒子は、製造が簡単であり、触媒活性に優れているため、自動車の排ガス除去用触媒(3元触媒など)や、工場の排気ガス処理用触媒、化学合成用の工業触媒、燃料電池用触媒等の多くの用途に利用することができる。特に、酸化還元反応の触媒として用いることができる。

【0042】
本発明の複合貴金属ナノ粒子は、種々公知の方法により触媒として用いることができ、例えば、ウォッシュコート(触媒担体保持材)の表面に担持することにより、3元触媒として使用することができる。
【実施例】
【0043】
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
【実施例】
【0044】
なお、以下の実施例において、金属イオン還元細菌の懸濁液の調製は、まず指数増殖末期に達した金属イオン還元細菌培養液を、窒素ガスにより嫌気状態にしたグローブボックス内で採取し、遠心分離機で集菌した。次に、集菌した菌液をイオン交換水で再懸濁し所定の濃度に調整した。
【実施例】
【0045】
[実施例1]
なお、本実施例では、触媒ウォッシュコート等から回収した貴金属の浸出貴液を、複合貴金属ナノ粒子の原料溶液として用いた。このように、触媒ウォッシュコートを再利用して複合貴金属ナノ粒子を製造する場合において、さらに全体の工程が簡略化され、製造効率が高められる。
【実施例】
【0046】
なお、ウォッシュコートの材質としては、コンバータの触媒能(反応が起きる表面積)を大きくするために通常、多孔質の無機酸化物(アルミナ、チタニア、ジルコニア、シリカ-アルミナなどの一般に触媒担体として用いられる無機酸化物)が用いられ、特に、活性アルミナが多く使われている。活性アルミナは、ランタンやセリウム等の希土類元素やバリウム等のアルカリ土類元素を含んでいる場合も多い。
【実施例】
【0047】
(原料溶液の調製)
まず、使用済み自動車用触媒コンバータから回収した粉末状の触媒含有ウォッシュコート(Al:29%,Ce:14%,Fe:0.97%,La:5.9%,Pd:0.24%,Pt:0.40%,Rh:0.083%)を用意した。なお、触媒含有ウォッシュコート中の各金属含有率は、王水で溶解させた後、溶液中の金属濃度を誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光法により測定して求めた値である。
【実施例】
【0048】
次に、触媒含有ウォッシュコート中の約6割を占めるAlを白金族金属から分離するための操作を行った。具体的には、触媒ウォッシュコートの粉末を4kmol/mの水酸化ナトリウム水溶液中に、初期固液混合比率が58.8kg/mとなるように添加した。その後、オートクレーブを用い、温度160℃、圧力5.8atmで、3時間の回分操作を行った。そして、浸出残渣をろ過により回収した。
【実施例】
【0049】
次に、回収した浸出残渣に対して、王水(濃塩酸と濃硝酸とを3:1の体積比で混合した液)による白金族金属の浸出を行った。なお、濃塩酸とは35w/v%HCl水溶液であり、濃硝酸とは60w/v%HNO水溶液である。王水に対する浸出残渣の混合比率(初期固液混合比率)は25kg/mとした。温度90℃、大気圧下で、3時間の操作を行った。なお、浸出貴液中の各白金族金属濃度を誘導結合プラズマ(ICP)発光分光法により測定し、2時間後に白金族金属(Pd、Pt、Rh)の大部分が浸出貴液中に浸出していることを確認した。
【実施例】
【0050】
次に、得られた浸出貴液に、該浸出貴液中の重金属成分(Al,Fe,Ce,La)のモル数の和の5倍以上の量のリン酸二水素カリウム(KHPO)を添加した後、さらに水酸化ナトリウム溶液を添加してpHが6付近になるように調整した。なお、このpH調整工程により、白金族金属以外の重金属成分の大部分を沈殿除去でき、この沈殿に伴う白金族金属の共沈殿はほとんど生じない。
【実施例】
【0051】
(バイオ還元工程)
以上のようにして得られたpH調整後の浸出貴液を原料溶液として用い、白金族金属(Pt,Pd,Rh)のバイオ還元工程を回分操作で行った。
【実施例】
【0052】
すなわち、浸出貴液、電子供与体(ギ酸ナトリウム)、金属イオン還元細菌の懸濁液とを混合した。金属イオン還元細菌としては、S. algae(ATCC51181株)を用いた。バイオ還元工程の主な操作条件は、細胞濃度:5.0×1015cells/m、電子供与体(ギ酸塩)初期濃度:100mol/m、溶液pH6、室温、嫌気環境下、操作時間:2hとした。
【実施例】
【0053】
図1に、実施例1におけるバイオ還元工程後の金属イオン還元細菌の透過電子顕微鏡(STEM)写真による撮影像を示す。楕円形の金属イオン還元細菌の細胞内の白点が、複合貴金属ナノ粒子である。また、図2に、図1の撮影像の部分拡大図を示す。高分解能STEM像で認められる複合貴金属ナノ粒子の粒子径は、1.5~4nm程度であった。
【実施例】
【0054】
また、図3~図8に、図2と同じ範囲における複合貴金属ナノ粒子のEDX元素分析に基づく各元素(Rh、Pd、Pt、C、N、O)のマッピング図を示す。図2に示される複合貴金属ナノ粒子の位置と、図3~5に示される各元素(Rh、Pd、Pt)の位置が一致している。また、ナノ粒子の中央部と端部で組成比の大きな違いは認められなかった。また、図2では、ナノ粒子の結晶格子縞が認められる。これらのことから、実施例1で得られた複合貴金属ナノ粒子は、3種の元素(Rh、Pd、Pt)からなる合金であると考えられる。一方、図6~8に示されるように、菌体の構成元素であるC、NおよびOは、複合貴金属ナノ粒子の位置とは関係なく全体的に分布している。
【実施例】
【0055】
[実施例2]
(原料溶液の調製)
原料溶液として、塩化パラジウムおよび塩化金の溶液を用いることにより、等モル量(0.5mol/m)のAuイオンおよびPdイオンを含有する水溶液を調製した。
【実施例】
【0056】
(バイオ還元工程)
原料溶液、電子供与体(ギ酸ナトリウム)、および、金属イオン還元細菌の懸濁液を混合した。金属イオン還元細菌としては、S. oneidensis(ATCC700550株)を用いた。バイオ還元工程の主な操作条件は、細胞濃度:5.0×1015cells/m、電子供与体(ギ酸塩)初期濃度:50mol/m、溶液pH7、室温、嫌気環境下、操作時間:2hとした。
【実施例】
【0057】
<試験例1>
上記実施例2のPd/Au合金ナノ粒子(上述のバイオ調製により製造され、細菌細胞に担持された状態)、Auナノ粒子(バイオ調製により製造され、細菌細胞に担持された状態)および市販Pdナノ粒子(製品名:パラジウム担持活性炭触媒、和光純薬工業株式会社社製)について、化学反応速度を測定した。Auナノ粒子は、原料溶液に含有されるAuイオンの組成が1mol/mである以外は、実施例2と同様にして製造されたナノ粒子である。
【実施例】
【0058】
化学反応速度の相対値は、モデル化学反応(4-ニトロフェノール還元脱色反応、室温)における触媒能(反応速度)の比較により求めた。
【実施例】
【0059】
図9は、試験例1における各ナノ粒子の化学反応速度(相対値)を示すグラフである。図9に示されるように、実施例2のPd/Au合金ナノ粒子の化学反応速度は、Auナノ粒子および市販Pdナノ粒子の3倍程度であり、本発明の複合貴金属ナノ粒子が高い活性を有していることが分かる。
【実施例】
【0060】
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8