TOP > 国内特許検索 > 粒子分取装置及び粒子分取方法 > 明細書

明細書 :粒子分取装置及び粒子分取方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第6436955号 (P6436955)
公開番号 特開2017-136583 (P2017-136583A)
登録日 平成30年11月22日(2018.11.22)
発行日 平成30年12月12日(2018.12.12)
公開日 平成29年8月10日(2017.8.10)
発明の名称または考案の名称 粒子分取装置及び粒子分取方法
国際特許分類 B01J  19/00        (2006.01)
G01N  15/14        (2006.01)
G01N  37/00        (2006.01)
FI B01J 19/00 N
G01N 15/14 K
G01N 37/00 101
請求項の数または発明の数 18
全頁数 25
出願番号 特願2016-213614 (P2016-213614)
出願日 平成28年10月31日(2016.10.31)
優先権出願番号 2016018036
優先日 平成28年2月2日(2016.2.2)
優先権主張国 日本国(JP)
審査請求日 平成30年2月15日(2018.2.15)
特許権者または実用新案権者 【識別番号】503360115
【氏名又は名称】国立研究開発法人科学技術振興機構
発明者または考案者 【氏名】合田 圭介
【氏名】磯崎 瑛宏
【氏名】芝田 悠大
【氏名】上村 想太郎
【氏名】白崎 善隆
【氏名】黄 惇厚
【氏名】小関 泰之
早期審査対象出願または早期審理対象出願 早期審査対象出願
個別代理人の代理人 【識別番号】100137800、【弁理士】、【氏名又は名称】吉田 正義
【識別番号】100148253、【弁理士】、【氏名又は名称】今枝 弘充
【識別番号】100148079、【弁理士】、【氏名又は名称】梅村 裕明
【識別番号】100188581、【弁理士】、【氏名又は名称】堀切 康平
審査官 【審査官】菊地 寛
参考文献・文献 米国特許出願公開第2005/0211557(US,A1)
国際公開第2005/121767(WO,A1)
特開2011-083665(JP,A)
特開2014-169925(JP,A)
特開2012-098063(JP,A)
特開2014-178119(JP,A)
米国特許第07744737(US,B1)
特表平06-509745(JP,A)
調査した分野 B01J 19/00
G01N 15/14
G01N 37/00
B03C 5/00
特許請求の範囲 【請求項1】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え
前記制御部は、選択した前記電極の一方の電極をグランド電極とし、他方の電極に前記グランド電極を基準にした電圧を印加することを特徴とする粒子分取装置。
【請求項2】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え、
前記制御部は、連続した3以上の電極を選択し、選択した前記電極のうち両端の電極を等電位とするとともに両端の前記電極の間の各電極を等電位とし、両端の前記電極と両端の前記電極の間の各前記電極との間に電圧を印加することを特徴とする粒子分取装置。
【請求項3】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え、
前記制御部は、隣接した前記電極に互いに異なる位相の交流電圧を印加することを特徴とする粒子分取装置。
【請求項4】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え、
前記流路を挟んで対向して設けられた第1の前記電極アレイ及び第2の前記電極アレイを有し、
前記制御部は、前記粒子の進路の変化方向に応じた第1の前記電極アレイまたは第2の前記電極アレイから、当該粒子の位置に対応した位置の前記電極を選択して前記流路内に電場を形成させ、
前記制御部は、前記粒子の進路の変化方向に応じて、第1の前記電極アレイまたは第2の前記電極アレイの一方の電極アレイの各電極をグランドすることを特徴とする粒子分取装置。
【請求項5】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え、
前記制御部は、下流の前記電極ほど印加する電圧を小さくすることを特徴とする粒子分取装置。
【請求項6】
流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、
前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、
前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、
前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部と
を備え、
前記電極は、前記流路の外側に設けられていることを特徴とする粒子分取装置。
【請求項7】
前記制御部は、両端の前記電極をグランド電極とし、両端の前記電極の間の各前記電極に前記グランド電極を基準にした電圧を印加することを特徴とする請求項に記載の粒子分取装置。
【請求項8】
前記電極アレイは、前記グランド電極となる前記電極と前記グランド電極を基準にした電圧が印加される前記電極とが予め決められており、前記グランド電極となる前記電極と前記グランド電極を基準にした電圧が印加される前記電極とが交互に並べられていることを特徴とする請求項またはに記載の粒子分取装置。
【請求項9】
前記制御部は、進路を変化させる前記粒子の位置に対応した位置の前記電極を選択し、前記粒子の流れに同期して選択する前記電極を下流に順次移動することを特徴とする請求項1~3、7、8のいずれか1項に記載の粒子分取装置。
【請求項10】
前記流路を挟んで前記電極アレイに対向した固定グランド電極を有することを特徴とする請求項1、2、7、8のいずれか1項に記載の粒子分取装置。
【請求項11】
前記流路を挟んで対向して設けられた第1の前記電極アレイ及び第2の前記電極アレイを有し、
前記制御部は、前記粒子の進路の変化方向に応じた第1の前記電極アレイまたは第2の前記電極アレイから、当該粒子の位置に対応した位置の前記電極を選択して前記流路内に電場を形成させることを特徴とする請求項1~3、7~9のいずれか1項に記載の粒子分取装置。
【請求項12】
前記制御部は、前記粒子の進路の変化方向に応じて、第1の前記電極アレイまたは第2の前記電極アレイの一方の電極アレイの各電極をグランドすることを特徴とする請求項11に記載の粒子分取装置。
【請求項13】
前記制御部は、下流の前記電極ほど印加する電圧を小さくすることを特徴とする請求項1~4、7~12のいずれか1項に記載の粒子分取装置。
【請求項14】
前記電極は、前記流路の外側に設けられていることを特徴とする請求項1~5、7~13のいずれか1項に記載の粒子分取装置。
【請求項15】
流路内に液体とともに粒子を流す流動ステップと、
前記流路に沿って1列に配された複数の電極を有する電極アレイから、前記粒子の位置に応じた隣接した2つの電極を選択し、選択した前記電極間に電圧を印加することによって、前記粒子の進路を変化させる進路変更工程と、
変化後の前記粒子の進路に応じて、前記電極アレイよりも前記流路の下流に設けた分岐部で分岐する複数の分流路のいずれかに前記粒子を流す仕分工程とを有し、
前記進路変更工程は、選択した前記電極の一方の電極をグランド電極とし、他方の電極に前記グランド電極を基準にした電圧を印加することを特徴とする粒子分取方法。
【請求項16】
流路内に液体とともに粒子を流す流動ステップと、
前記流路に沿って1列に配された複数の電極を有する電極アレイから、前記粒子の位置に応じた隣接した2つの電極を選択し、選択した前記電極間に電圧を印加することによって、前記粒子の進路を変化させる進路変更工程と、
変化後の前記粒子の進路に応じて、前記電極アレイよりも前記流路の下流に設けた分岐部で分岐する複数の分流路のいずれかに前記粒子を流す仕分工程とを有し、
前記進路変更工程は、連続した3以上の電極を選択し、選択した前記電極のうち両端の電極を等電位とするとともに両端の前記電極の間の各電極を等電位とし、両端の前記電極と両端の前記電極の間の各前記電極との間に電圧を印加することを特徴とする粒子分取方法。
【請求項17】
流路内に液体とともに粒子を流す流動ステップと、
前記流路に沿って1列に配された複数の電極を有する電極アレイから、前記粒子の位置に応じた隣接した2つの電極を選択し、選択した前記電極間に電圧を印加することによって、前記粒子の進路を変化させる進路変更工程と、
変化後の前記粒子の進路に応じて、前記電極アレイよりも前記流路の下流に設けた分岐部で分岐する複数の分流路のいずれかに前記粒子を流す仕分工程とを有し、
前記進路変更工程は、下流の前記電極ほど印加する電圧を小さくすることを特徴とする粒子分取方法。
【請求項18】
前記進路変更工程は、前記粒子の流れに同期し電圧を印加する前記電極を下流に順次移動することを特徴とする請求項15~17のいずれか1項に記載の粒子分取方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、粒子分取装置及び粒子分取方法に関する。
【背景技術】
【0002】
マイクロ流路に粒子を液体とともに流し、個々の粒子を順次に分析するフローサイトメータが知られている。また、このフローサイトメータの分析結果に基づいて、必要とする粒子を選別して分取する粒子分取装置が知られている。例えば粒子として細胞を分取する粒子分取装置では、マイクロ流路に細胞を流し細胞の特性ごとに分類することができる。これにより、同じ特性を有する大量の細胞を用いた分析を行うことができる。
【0003】
粒子分取装置として誘電泳動力を利用したものが知られている。この誘電泳動力を利用した粒子分取装置では、マイクロ流路と、マイクロ流路に設けた一対の電極と、マイクロ流路から分岐される複数の分流路とを備える。一対の電極は、細胞の流れる方向と直交する方向に対向して設けられ、例えば分取すべき細胞が一対の電極間を通る間に、交流電圧が印加される。これにより、一対の電極間に不均一な電場、すなわち電場強度に勾配を有する電場を形成する。この不均一な電場中の細胞に誘電泳動力が生じ、流れと直交する方向に細胞が移動する。これにより、マイクロ流路内における細胞の進路を変えて、所望とする分流路に導く。ここで、誘電泳動力は、電場の不均一の程度、つまり一対の電極間の電場強度勾配、すなわち電気力線の密度の変化量で決まる。
【0004】
また、スループット、すなわち単位時間当たりに処理できる細胞の個数を増やすようにした粒子分取装置が特許文献1によって知られている。この特許文献1の粒子分取装置では、流路に沿って配されたコモン電極に対向させて複数の電極指を並べて配することにより、1つの電極指とコモン電極とからなる複数の作用電極対を流路に沿って設けている。複数の作用電極対は、流路に沿って複数のグループに分けられ、グループのそれぞれの電圧印加を個別に制御する。これにより、各グループの作用電極対の間の粒子のそれぞれに対して誘電泳動力を生じさせるか否かを個別に制御する。
【先行技術文献】
【0005】

【特許文献1】特開2012—98063号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、特許文献1のように作用電極対を流路に沿って複数設け、それら複数の作用電極対に同時に電圧を印加した場合、電場の不均一さが弱く(作用電極対の間における電気力線密度の変化量が小さく)なり、各々の作用電極対によって十分な誘電泳動力が得られなくなる。このため、細胞の流れを遅くする、あるいは電極指同士の間隔を十分に大きくする等の対策が必要であり、結果としてスループットを十分に高められないという問題があった。
【0007】
本発明は、上記事情を鑑みてなされたものであり、スループットを向上することができる粒子分取装置及び粒子分取方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、流路内を液体と共に流れる粒子の進路を変化させて粒子を分取する粒子分取装置において、前記流路に沿って1列に配された複数の電極を有する電極アレイを含み、前記粒子の進路を変更させる偏向部と、前記偏向部よりも前記流路の下流に設けられ、複数の分流路を有する分岐部と、前記電極アレイから前記粒子の位置に応じた隣接した2つの電極を選択し、選択した2つの電極間に電圧を印加して前記流路内に電場を形成させる制御部とを備えるものである。

【発明の効果】
【0009】
本発明によれば、選択した2つの電極間に電圧を印加することにより、十分な誘電泳動力を生じさせることができるので、単位時間あたりに処理できる粒子の個数、すなわちスループットを向上させることができる。
【図面の簡単な説明】
【0010】
【図1】第1実施形態の粒子分取装置の構成を示す概略図である。
【図2】偏向部の構成を示す斜視図である。
【図3】粒子が流れる方向と直交する面での基板の断面を示す断面図である。
【図4】電極の先端を流路内に配した例を示す基板の断面図である。
【図5】4本の分流路に分流する例を示す説明図である。
【図6】第2実施形態の偏向部の構成を示す概略図である。
【図7】第2実施形態の変形例(1)に係る偏向部の構成を示す概略図である。
【図8】第2実施形態の変形例(2)に係る偏向部の構成を示す概略図である。
【図9】第2実施形態の変形例(3)に係る偏向部の構成を示す概略図である。
【図10】発生する誘電泳動力の大きさを示すグラフである。
【図11】流路内での粒子の移動の状態を示す写真である。
【図12】流路内での選別粒子とその前後の粒子の移動長の変化を示すグラフである。
【図13】偏向部の構成の違いによる粒子Pに作用する誘電泳動力の違いをシミュレーションした結果を示したグラフである。
【図14】シミュレーション結果(1)を示す図であり、図14Aはモデルの模式図、図14Bは誘電泳動力の向きと大きさを示す図、図14Cは図14Bの部分拡大図である。
【図15】シミュレーション結果(2)を示す図であり、図15Aはモデルの模式図、図15Bは誘電泳動力の向きと大きさを示す図、図15Cは図15Bの部分拡大図である。
【図16】シミュレーション結果(3)を示す図であり、図16Aはモデルの模式図、図16Bは誘電泳動力の向きと大きさを示す図、図16Cは図16Bの部分拡大図である。
【図17】シミュレーション結果(4)を示す図であり、図17Aはモデルの模式図、図17Bは誘電泳動力の向きと大きさを示す図、図17Cは図17Bの部分拡大図である。
【図18】シミュレーション結果(5)を示す図であり、図18Aはモデルの模式図、図18Bは誘電泳動力の向きと大きさを示す図、図18Cは図18Bの部分拡大図である。
【図19】最適な電極幅を求める際のシミュレーションに用いたモデルを示す概略図である。
【図20】最適な電極幅をシミュレーションした結果を示したグラフである。
【図21】電極幅と、電極と液滴間の距離との関係をシミュレーションした結果を示したグラフである。
【発明を実施するための形態】
【0011】
1.第1実施形態
図1において、本発明を実施した粒子分取装置10は、流路デバイス11、供給部12、検出部13、分析部14、制御部15、及び電源部PS(図2参照)を備える。流路デバイス11は、基板16の内部にマイクロ流路(以下、単に流路という)17が形成されるとともに、その内部に偏向部18が設けられている。偏向部18は、流路17を挟んだ一方の側に配された電極アレイとしての信号電極部22を有している。偏向部18は、上記信号電極部22に加え、流路17を挟んだ他方の側に固定グランド電極21を有していてもよい。

【0012】
基板16は、例えば流路17となる溝等を設けたプレート16a、16bを、互いに溝を形成した面同士を接合することで形成されている。なお、プレート16a、16bのうちの一方に流路17となる溝等を形成してもよい。また、基板16の内部には、固定グランド電極21及び信号電極部22と制御部15や電源部PSとを接続する配線等があるが、図1では省略して描いてある。

【0013】
流路17は、X方向に延びており、その一端に供給部12が接続されている。供給部12は、粒子Pを含む液体を流路17に供給する。これにより、流路17内で粒子Pと液体とがX方向に流れる。供給部12は、例えば流路17に供給する液体の流量を調整することにより、流路17内における粒子Pを一定の速さで流す。また、供給部12は、粒子Pが等間隔で流れるように流路17に粒子Pを供給する。粒子Pとしては、各種の細胞を挙げることができるが、これに限るものではない。粒子Pは、液滴でもよい。粒子Pが液滴である場合、液滴中に細胞、DNA、結晶などを含むのが好ましい。流路17は、その他端(下流)側の分岐部23で第1分流路24と第2分流路25とに分岐している。

【0014】
検出部13は、例えば流路17内の粒子Pが通る軌跡上に設定した検出位置にレーザ光を照射しており、検出位置を粒子Pが通過した際にレーザ光によって励起された粒子Pの蛍光物質からの蛍光を受光した受光結果と、粒子Pの通過タイミングを示すタイミング信号とを分析部14に出力する。分析部14は、検出部13の受光結果から粒子Pを検査や調査等のために取得すべき粒子P(以下、他の粒子Pと区別する場合には選別粒子Pという)であるか否かを判別する。分析部14は、選別粒子Pと判別した場合には、タイミング信号の入力から一定の遅延時間後に選別信号を制御部15に出力する。なお、取得すべき粒子Pではなく、不要な粒子Pを選別粒子Pとしてもよい。本明細書では、説明の便宜上、取得すべき粒子Pを選別粒子Pとして説明する。

【0015】
制御部15は、選別信号が入力されると、詳細を後述するように、選別粒子Pが偏向部18内の流路17を流れる際に、その移動方向(X方向)と直交するY方向に選別粒子Pに誘電泳動力を作用させて、選別粒子Pを流路17内でY方向に移動させて、進路を変える。これにより、選別粒子Pを第2分流路25に流れるようにする。取得すべきと判別されなかった粒子Pは、偏向部18で進路を変化しないことにより第1分流路24に流す。

【0016】
なお、この例では検出部13での検出方法にレーザ光の照射による蛍光検出を用いているが、検出方法は、これに限るものではなく、例えば画像取得により粒子Pの形状情報を分析部14に出力してもよい。そのほかにも、分光分析など、さまざまな検出方法が適用可能である。また、上記粒子Pの分取する基準は、任意であり、分取の基準に応じた検出手法、分析手法を用いることができる。

【0017】
第1分流路24、第2分流路25には、取出口24a、25aが設けられている。これにより、取出口24aからは、第1分流路24に流れて取得すべきと判別されなかった粒子Pを取り出すことができ、取出口25aからは、第2分流路25に流れた選別粒子Pを取り出すことができる。

【0018】
図2に示すように、偏向部18は、前述のように固定グランド電極21と信号電極部22を備え、信号電極部22は、電極としての、複数の信号電極31及び複数の第1、第2補助グランド電極32a、32bを有している。固定グランド電極21は、その平坦な面が流路17に沿って配されている。固定グランド電極21、第1、第2補助グランド電極32a、32bは、常にグランドされている。

【0019】
複数の信号電極31は、固定グランド電極21に対向して設けられ、固定グランド電極21との間に流路17を挟んでいる。各信号電極31は、流路17に沿って所定の間隔をあけて配されており、信号電極31と信号電極31との間には、第1補助グランド電極32aが配されている。この例では、各信号電極31の幅(流路17に沿った方向(X方向)の長さ)は、同じにしてある。また、各信号電極31は、一定の配列ピッチで並べてあり、第1補助グランド電極32aとその両側にある各信号電極31との各間隔は同じにしてある。さらに、信号電極31のうち最上流に配された信号電極31の上流側と最下流に配された信号電極31の下流側とには、それぞれ第2補助グランド電極32bを配してある。

【0020】
固定グランド電極21と信号電極31のそれぞれとの間隔は同じになっている。これら信号電極31は、電圧が印加されることによって、当該信号電極31と固定グランド電極21との間に不均一な電場、すなわちY方向に電場強度の勾配を有する電場を形成する。これにより、粒子Pに誘電泳動力を作用させて粒子PをY方向に移動させる。粒子Pに作用する誘電泳動力は、電場の不均一の程度、つまり信号電極31と固定グランド電極21との間の電場強度勾配、すなわち電気力線の密度の変化量で決まる。

【0021】
各信号電極31は、それぞれ制御部15によって独立に電圧の印加が制御され、各々の信号電極31と固定グランド電極21の間の各電場の形成をそれぞれ独立に制御することができる。粒子Pは、この例では、電場強度が弱い領域から強い領域へ向かわせる誘電泳動力が作用して粒子Pが信号電極31に寄る方向に移動するものとするが、電場強度が強い領域から弱い領域へ向かわせる誘電泳動力で逆方向に粒子Pが移動するものでもよい。

【0022】
信号電極31の幅は、これを狭くすることによって、電場の不均一さを強める(信号電極31と固定グランド電極21との間の電気力線密度の変化量を大きくする)ことができ、また順次流れてくる粒子Pを別々にY方向に移動するために必要な粒子P同士の間隔を狭くすることができる。一方で、信号電極31の幅を広くすることによって、電場の集中による粒子Pの極端な変形や破壊を防止することができる。信号電極31の幅は、粒子Pの直径に対し、1倍以上5倍以下であるのが好ましく、1.5倍以上3倍以下がより好ましく、2倍程度が最も好ましい。本実施形態の場合、信号電極31の幅は、粒子Pの直径と略同一、もしくは粒子Pの直径よりも大きい。この例では、信号電極31の幅を粒子Pの直径の約2倍にしている。このように信号電極31の幅を広めに設定しても、後述するように、第1、第2補助グランド電極32a、32bの作用によって、信号電極31が固定グランド電極21との間に形成する電場の不均一さを強められるので、必要な誘電泳動力は得られる。なお、粒子Pの直径としては、例えば平均直径を用いることができる。

【0023】
また、電場の集中を抑え粒子Pの極端な変形や破壊を防止するために、信号電極31の先端部(流路17側の端部)を、尖鋭ではない形状や角がない形状である丸みを帯びた形状としている。この例では、信号電極31の先端部を半円形状にしている。このように、信号電極31の先端部を丸みを帯びた形状とすることによって、信号電極31の近傍で局所的に電場強度が極端に強くならないようにしている。信号電極31の先端部の丸みを帯びた形状としては、例えば流路17に対向する部分が直線状で両端の角が円弧状としたものでもよい。

【0024】
上記のように、電場の集中を抑え粒子Pの極端な変形や破壊を防止するために、この例ではXY平面で見た信号電極31の先端部の形状を尖鋭ではない形状や角がない形状である丸みを帯びた形状としているが、変形や破壊を防止するための尖鋭ではない形状や角がない形状は、これに限るものではない。例えば、信号電極31に厚みを持たせることで、YZ平面から見た形状を尖鋭ではない形状とすることも可能である。また、YZ平面から信号電極31を見たときに、信号電極31の角を丸めた形状することも好ましい。なお、Z方向は、X方向及びY方向にそれぞれ直交する方向である。

【0025】
第1補助グランド電極32aは、上記のように信号電極31の間に配されている。これら第1補助グランド電極32aは、複数の信号電極31に電圧が同時に印加されるときに、電圧が印加された各信号電極31と固定グランド電極21との間にそれぞれ形成される電場の不均一さが弱まること、すなわち電場強度の勾配が小さくなることを抑制するために設けてある。これにより、複数の信号電極31に電圧が同時に印加された場合であっても、粒子Pに十分な誘電泳動力を作用させる。

【0026】
最上流の信号電極31の上流側に設けた第2補助グランド電極32bと、最下流の信号電極31の下流側に設けた第2補助グランド電極32bは、流路17に沿って延びている。これにより、誘電泳動力を作用させる領域以外への電場の漏れ出しを防ぎ、信号電極部22へ入る前の粒子Pへ誘電泳動力が作用することを防ぐことができる。

【0027】
また、上記のように第1、第2補助グランド電極32a、32bを配設することによって、各信号電極31は、その両側に一対の第1補助グランド電極32aが、または第1補助グランド電極32aと第2補助グランド電極32bとが配置された構造となっている。これにより、信号電極31と固定グランド電極21との間にそれぞれ形成される電場の不均一さを強め、信号電極31から従来よりも離れた位置の粒子Pにまで誘電泳動力を作用させて移動させることができる。

【0028】
第1補助グランド電極32aと信号電極31の間隔は、流路17に流れる粒子Pの間隔よりも小さいことが好ましい。これにより、選別粒子Pのみに誘電泳動力を作用することができる。また、第1補助グランド電極32aの幅は、信号電極31の幅に対して小さくすることが好ましい。これにより、第1補助グランド電極32aによって、誘電泳動力がほとんど作用しない領域をX方向について狭くすることができる。これら第1、第2補助グランド電極32a、32bと固定グランド電極21との間隔は、信号電極31と固定グランド電極21との間隔と同じにしてある。第1補助グランド電極32aの先端は、信号電極31と同様に丸みを帯びた形状としてある。信号電極31に向いた第2補助グランド電極32bの先端についても、信号電極31と同様に丸みを帯びた形状としてある。このように第1、第2補助グランド電極32a、32bの先端を丸みを帯びた形状とすることにより、電場の過度な集中を避け、粒子Pへのダメージを抑制している。

【0029】
制御部15は、タイミング処理部35と、スイッチ部36とを有しており、各信号電極31への電圧印加を制御する。各信号電極31は、スイッチ部36を介して電源部PSに接続されて、電源部PSからの交流の電圧が印加される。スイッチ部36は、タイミング処理部35によって制御される信号電極31ごとのスイッチ回路で構成されており、通常は信号電極31をグランドしており、電圧を印加する場合に信号電極31を電源部PSに接続する。

【0030】
タイミング処理部35には、分析部14からの選別信号が入力される。タイミング処理部35は、選別信号に応答して、選別粒子Pの位置に対応した信号電極31に、スイッチ部36を介して電源部PSからの電圧を印加する。すなわち、タイミング処理部35は、選別信号の入力タイミングと、分析部14による選別粒子Pの検出から選別信号出力までの遅延時間と、流路17内での粒子Pの移動する速さと、検出部13での検出位置から各信号電極31までの距離と、信号電極31の幅等とに基づき、選別粒子Pが信号電極31による誘電泳動力が作用する作用領域に入る第1タイミングと出る第2タイミングを信号電極31ごとにそれぞれ求め、選別粒子Pが入っている作用領域に対応した信号電極31に電圧を印加する。作用領域は、例えば信号電極31と同じ幅の領域になっている。これにより、選別粒子Pの移動に同期して、上流側の信号電極31から順番に電圧を印加し、選別粒子Pの進路を順次に変化させて第2分流路25に導く。

【0031】
図3に流路デバイス11の断面を示すように、固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bは、流路17の外側に設けられている。このような構造は、流路17内を流れる液体に接触することによる固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bの劣化を防止する上で有利である。また、このような構造にすることによって、流路17内を流れる液体の流れの乱れの発生や誘電泳動力による粒子Pの電極への接触を防止することができる。

【0032】
また、この例では固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bを流路17の上下方向の中央の位置に設けている。固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bの位置は、これに限るものではなく、例えば2点鎖線で示す流路17の上部の位置や、流路17の下部の位置に設けてもよい。信号電極31と固定グランド電極21との間で形成される電場は、流路17内で上下方向にも広がるので、上下方向に固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bの位置と粒子Pの位置とがずれていても、粒子Pに電場を作用させて誘電泳動力を生じさせることができる。

【0033】
次に上記構成の作用について説明する。流路17内には、次々と粒子Pが供給部12から液体とともに供給されて、粒子Pがほぼ等間隔で流れる。粒子Pの間隔は、流路17内において、前後する粒子Pが同じ信号電極31の作用領域に同時に入らないように調整されており、例えば信号電極31の配列ピッチとほぼ同じ間隔にされている。また、粒子Pは、Y方向について流路17内のほぼ中央あるいは固定グランド電極21に寄った位置に流される。

【0034】
供給される粒子Pが検出部13の検出位置を通過する際に、レーザ光の照射によって励起された粒子Pの蛍光物質からの蛍光が検出部13で受光される。検出部13は、このように蛍光を受光すると、その受光結果と通過タイミングを示すタイミング信号を分析部14に出力する。そして、分析部14は、検出部13からの受光結果に基づいて、検出された粒子Pが検査や調査等のために取得すべき粒子Pであるか否かを判別する。

【0035】
上記判別において、例えば粒子Pが取得すべき粒子Pではないと判別した場合には、分析部14は、選別信号を出力しない。したがって、この場合には、制御部15のタイミング処理部35は、その粒子Pに対しては、信号電極31に電源部PSからの電圧を印加する制御を行わない。このため、当該粒子Pは、進路が変わることなく偏向部18の流路17をそのまま進み、分岐部23において第1分流路24に流れる。そして、取出口24aから取得すべきと判別されなかった粒子Pとして取り出される。

【0036】
一方、粒子Pが取得すべき粒子P、すなわち選別粒子Pであると判別した場合には、分析部14は、検出部13からのタイミング信号の入力から一定の遅延時間後に選別信号をタイミング処理部35に出力する。この選別信号に応答して、タイミング処理部35は、その選別信号に対応した選別粒子Pが各信号電極31の作用領域に入る第1タイミングと出る第2タイミングをそれぞれ求める。

【0037】
そして、最も上流側の1番目の信号電極31についての第1タイミングになると、タイミング処理部35はスイッチ部36を介して、その1番目の信号電極31に電圧を印加する。これにより、1番目の信号電極31と固定グランド電極21との間に、不均一な電場が形成される。そして、この1番目の信号電極31で電場が形成されるタイミングで、選別粒子Pが1番目の信号電極31の作用領域に入るから、形成された電場によって生じる誘電泳動力でY方向に移動しながら流路17の下流に向けて流れる。

【0038】
1番目の信号電極31についての第2タイミングになると、1番目の信号電極31に対する電圧の印加がタイミング処理部35によって停止される。したがって、選別粒子Pが1番目の信号電極31の作用領域に出るタイミングで、1番目の信号電極31の電圧印加が停止される。

【0039】
続いて、上流側から2番目の信号電極31についての第1タイミングになると、タイミング処理部35はスイッチ部36を介して、その2番目の信号電極31に電圧を印加する。これにより、2番目の信号電極31と固定グランド電極21との間に不均一な電場が形成される。そして、選別粒子Pは、電場の形成されるタイミングで2番目の信号電極31の作用領域に入るから、その電場で生じる誘電泳動力によって、さらにY方向に移動しながら流路17の下流に向けて流れる。

【0040】
以降、同様にして、上流側から3番目、4番目、5番目の信号電極31にそれぞれ対応する第1タイミングで電圧が印加され、第2タイミングで電圧の印加が停止される。そして、3番目、4番目、5番目の信号電極31の電圧の印加によって形成される不均一な電場で1つの選別粒子PがY方向に移動しながら下流に進む。このようにして選別粒子Pは、信号電極31側に寄った位置を流れるように進路が変えられるから、さらに下流に進んで分岐部23に達すると、第2分流路25に流れる。これにより、その選別粒子Pを取出口25aから取り出すことができる。

【0041】
ところで、流路17内では、前後する粒子Pがいずれも選別粒子Pとなることも、一方だけが選別粒子Pとなることもある。例えば、前後する粒子Pがいずれも選別粒子Pとなる場合では、それら選別粒子Pが第1補助グランド電極32aを挟む各信号電極31の作用領域をそれぞれに同時に流れる状態になることもある。この場合には、第1補助グランド電極32aを挟む各信号電極31のそれぞれに電圧が同時に印加される。これにより、2つの信号電極31と固定グランド電極21との間で電場が形成されることになる。

【0042】
第1補助グランド電極32aが設けられていない場合では、隣接した各信号電極31に電圧が印加されると、あたかもそれら各信号電極31をまとめた大きな信号電極を固定グランド電極21に対向させて電場を形成したような状態になる。そして、固定グランド電極21に対向する信号電極の幅が大きくなることで、形成される電場の不均一さが弱まってしまい、選別粒子Pに作用する誘電泳動力が小さくなってしまう。したがって、各選別粒子PのY方向の移動長が十分でなくなる。

【0043】
しかしながら、この例では、各信号電極31の間に第1補助グランド電極32aが配されているため、形成される電場の不均一さが弱まることが抑制されて、各信号電極31によって形成される電場の電場強度の勾配が十分な大きさに維持される。したがって、各選別粒子Pには、それぞれ十分な誘電泳動力が作用してY方向に移動し、十分なY方向への移動長が得られる。

【0044】
上記のように第1補助グランド電極32aを挟む一対の信号電極31に同時に電圧が印加される場合に限らず、3~5個の信号電極31に同時に電圧が印加される場合についても同様である。例えば、5個の選別粒子Pが信号電極31の間隔と略同一程度で偏向部18内の流路17を同時に流れ、全ての信号電極31に電圧が印加される場合であっても、各信号電極31と固定グランド電極21との間に形成される電場の不均一さが弱まることが第1補助グランド電極32aによって抑制されるので、5個の各選別粒子Pを十分な誘電泳動力でY方向に移動させることができる。

【0045】
一方、前後する粒子Pの一方だけが選別粒子Pとなる場合には、第1補助グランド電極32aを挟んだ一対の信号電極31のうち一方の信号電極31に電圧が印加され、他方の信号電極31には電圧が印加されない。そして、電圧が印加された一方の信号電極31が固定グランド電極21との間に形成する不均一な電場は、他方の信号電極31との間に第1補助グランド電極32aが配されているため、その他方の信号電極31の作用領域の粒子Pに対して誘電泳動力をほとんど生じさせない。

【0046】
したがって、前後する粒子Pのうちの選別粒子PだけをY方向に移動することができる。同様にして、選別粒子Pとそうではない粒子Pとの様々な組み合わせ、例えば2個の選別粒子Pの間に選別粒子Pではない1個の粒子Pが並んでいるような場合や、その逆に選別粒子Pではない2個の粒子Pの間に1個の選別粒子Pが並んでいるような場合であっても、選別粒子PだけをY方向に移動させることができる。しかも、この場合であっても、十分な大きさの電場強度の勾配が得られ、各選別粒子Pに十分な誘電泳動力を作用させてY方向に移動させることができる。

【0047】
上記のように粒子分取装置10では、複数の信号電極31に同時に電圧を印加した場合であっても、第1補助グランド電極32aによって、電場の不均一さが弱くなることが抑制されて、十分な誘電泳動力を選別粒子Pに作用させることができる。したがって、例えば、粒子PがX方向に移動する速さを大きくしても、粒子PをY方向に必要な移動長で移動させることができるから、単位時間あたりに処理することができる粒子Pの個数、すなわちスループットが向上する。また、信号電極31同士の間隔を狭くしても、粒子PをY方向に必要な移動長で移動させることができるから、流路17内における粒子Pの間隔(距離)を短くして個々の粒子Pを選別することができ、結果としてスループットが向上する。

【0048】
上記の例では、固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bを流路17の外側に設けているが、図4に示すように、固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bの先端を流路17内に配してもよい。このような構造にすることによって、信号電極31に印加する交流の電圧を低くすることができ、低電圧の電源部PSを用いることができる他、信号電極31と第1、第2補助グランド電極32aとの間の絶縁性能の条件を低くすることも可能になる。粒子Pが誘電泳動力によって信号電極31から離れる方向に移動する場合(例えば、細胞)、信号電極31の先端を流路17内に配する構造は、選別粒子Pが信号電極31に接触することを防止できるので、好適である。

【0049】
上記実施形態では、粒子Pを第1分流路24、第2分流路25に分けているが、信号電極31から従来よりも離れた位置の選別粒子Pにまで誘電泳動力を作用させて移動させることができるので、すなわちY方向の移動長を長くできるので、より多くの流路に分けることも可能である。例えば、図5に示す例では、第1~第4流路41~44に粒子Pを分けている。この場合、分岐すべき分流路に応じた個数の信号電極31に順次電圧を印加して、粒子PのY方向の移動長を調節すればよい。

【0050】
また、上記のように固定グランド電極21、信号電極31、第1、第2補助グランド電極32a、32bを設けた構成は、各信号電極31に同時に電圧を印加した場合でも、各信号電極31がそれぞれ大きな誘電泳動力を粒子Pに作用させることができるから、各信号電極31を1つの信号電極部として常に同時に電圧を印加する粒子分取装置にも有用な構成である。この場合、信号電極部とグランド電極との間を1個の粒子Pが通過するまでは、それらの間に他の粒子Pを入れることはできないので粒子Pの間隔(距離)を大きくする必要があるが、粒子Pが移動する速さを大きくしても必要とするY方向への移動長が得られるため、結果としてスループットを高くすることができる。

【0051】
制御部15は、選別粒子Pが下流へいくほど、第1タイミングで信号電極31に印加する電圧を小さくするのが好ましい。選別粒子Pは、下流へ流れながら作用する誘電泳動力によりY方向へ移動しているので、下流において上流と同じ電圧により大きい誘電泳動力を作用させると、流路17の壁面に衝突し損傷してしまう恐れがある。このような選別粒子Pの損傷を防ぐため、制御部15は、下流の信号電極31ほど印加する電圧を小さくするのが望ましい。

【0052】
2.第2実施形態
上記第1実施形態と同様の構成について同様の符号を付した図6を参照して、第2実施形態に係る偏向部について説明する。偏向部50は、流路17に沿って一列に配された複数の電極51を有する電極アレイとしての第1電極アレイ52Aを、流路17の一方の側にのみ備える。流路17の他方の側には、いずれの電極も設けられていない。

【0053】
電極51は、XY平面視において略矩形状であり、電極51の長手方向において幅が一定である。電極51の幅は、粒子Pの直径に対し少なくとも1/5倍以上であれば足り、1倍以上5倍以下であるのが好ましく、1.5倍以上3倍以下がより好ましく、2倍程度が最も好ましい。本図の場合、電極51の幅は、粒子Pの直径の約2倍にしている。電極51は、先端を流路17の中心に向け、長手方向を流路17に対し直行する方向とし、流路17に沿って所定の間隔をあけて配されている。各電極51は、一定の配列ピッチで並べてある。各電極51は、隣り合う電極51間の流路17中に不均一な電場、すなわちY方向に電場強度の勾配を有する電場を形成する。

【0054】
制御部15は、それぞれの電極51に印加する電圧を制御することによって、隣り合う電極51間の電場の形成をそれぞれ独立に制御する。制御部15は、タイミング処理部35と、スイッチ部36とを有しており、電極51への電圧印加を制御する。制御部15は、電極51ごとに印加する電圧を制御し、選択された隣接する2つの電極51間に電圧を印加する。例えば、制御部15は、選択した2つの電極51のうち一方の電極51をグランドとし、他方の電極51に前記グランドを基準にした電圧を印加することとしてもよい。

【0055】
次に上記構成の作用について説明する。流路17内には、次々と粒子Pが供給部から液体とともに供給されて、粒子Pがほぼ等間隔で流れる。粒子Pの間隔は、流路17内において、前後する粒子Pが同じ電極51の作用領域に同時に入らないように調整されており、例えば電極51の配列ピッチとほぼ同じ間隔にされている。

【0056】
粒子Pが選別粒子Pである場合、最も上流側の1番目の電極51についての第1タイミングになると、タイミング処理部35はスイッチ部36を介して、その1番目の電極51に電圧を印加し、2番目の電極51をグランドにする。これにより、1番目の電極51と2番目の電極51間の流路17中に、不均一な電場が形成される。1番目の電極51で電場が形成されるタイミングで、選別粒子Pが1番目の電極51の作用領域に入るから、形成された電場によって生じる誘電泳動力でY方向に移動しながら流路17の下流に向けて流れる。

【0057】
タイミング処理部35は、1番目の電極51についての第2タイミングになると、1番目の電極51に対する電圧の印加を停止する。したがって、選別粒子Pが1番目の電極51の作用領域を出るタイミングで、1番目の電極51の電圧印加が停止される。

【0058】
続いて、上流側から2番目の電極51についての第1タイミングになると、タイミング処理部35はスイッチ部36を介して、その2番目の電極51に電圧を印加し、3番目の電極51をグランドにする。これにより、2番目の電極51と3番目の電極51間の流路17中に不均一な電場が形成される。選別粒子Pは、電場の形成されるタイミングで2番目の電極51の作用領域に入るから、その電場で生じる誘電泳動力によって、さらにY方向に移動しながら流路17の下流に向けて流れる。

【0059】
以降、同様にして、上流側から3番目、4番目、5番目の電極51にそれぞれ対応する第1タイミングで電圧が印加され、第2タイミングで電圧の印加が停止される。そして、3番目、4番目、5番目の電極51の電圧の印加によって形成される不均一な電場で1つの選別粒子PがY方向に移動しながら下流に進む。このようにして選別粒子Pは、電極51側に寄った位置を流れるように進路が変えられるから、さらに下流に進んで分岐部(本図には図示しない)に達すると、第2分流路25に流れる。これにより、その選別粒子Pを取出口25aから取り出すことができる。

【0060】
本実施形態の場合、隣り合う電極51間に電圧を印加することにより、流路17を流れる粒子Pに十分な誘電泳動力を生じさせることができるので、単位時間当たりに処理できる粒子Pの個数を向上することができる。

【0061】
制御部15は、選別粒子Pが下流へいくほど、第1タイミングで電極51に印加する電圧を小さくするのが好ましい。選別粒子Pは、下流へ流れながら作用する誘電泳動力によりY方向へ移動しているので、下流において上流と同じ電圧により大きい誘電泳動力を作用させると、流路17の壁面に衝突し損傷してしまう恐れがある。このような選別粒子Pの損傷を防ぐため、制御部15は、下流の電極51ほど印加する電圧を小さくするのが望ましい。

【0062】
タイミング処理部35は、連続した3以上、例えば1~3番目の3つの電極51を選択し、2番目の電極51についての第1タイミングで、選択した電極51のうち両端の電極51である1,3番目の電極51をグランドにするとともに、両端の1,3番目の電極51の間の2番目の電極51に電圧を印加し、両端の1,3番目の電極51と2番目の電極51との間に電圧を印加することとしてもよい。逆に、タイミング処理部35は、2番目の電極51についての第1タイミングで、選択した電極51のうち両端の電極51である1,3番目の電極51に電圧を印加し、両端の1,3番目の電極51の間の2番目の電極51をグランドにし、両端の1,3番目の電極51と2番目の電極51との間に電圧を印加することとしてもよい。

【0063】
前後する粒子がいずれも選別粒子Pとなる場合では、それら選別粒子Pが複数の電極51の作用領域を同時に流れる状態になる。この場合には、前後する粒子Pごとに、対応した複数の電極51の内の両端の電極51をグランドにすると共に、両端の電極51の間の電極51に電圧を同時に印加することにより、前後する粒子Pに対応したそれぞれの作用領域に電場を形成することができる。

【0064】
本実施形態の場合、選択した隣接する2つの電極51のうち一方の電極51をグランドとし、他方の電極51に前記グランドを基準にした電圧を印加する場合について説明したが、本発明はこれに限らず、一方の電極51にも他方の電極51に比べ低い電圧を印加することとしてもよい。

【0065】
上記第2実施形態の場合、偏向部50は、流路17に沿って一列に配された複数の電極51を有する第1電極アレイ52Aを、流路17の一方の側にのみ備え、他方の側にはいずれの電極も備えていない場合について説明したが、本発明はこれに限らない。

【0066】
例えば、図7に示す偏向部54のように、流路17の他方の側に、固定グランド電極21を備えることとしてもよい。この場合、流路17を挟んで電極51と固定グランド電極21間の電場の不均一さが強くなるので、作用領域に入った選別粒子Pに、より大きな誘電泳動力を作用させることができる。

【0067】
また図8に示す偏向部56のように、流路17の一方の側に加え、他方の側にも、流路17に沿って一列に配された複数の電極51を有する電極アレイを備えることとしてもよい。本図に示す偏向部56は、流路17を挟んで一方の側に第1電極アレイ52A、他方の側に電極アレイとしての第2電極アレイ52Bが設けられている。偏向部56は、第1電極アレイ52Aと第2電極アレイ52Bを備えることにより、流路17のY方向の全域にわたって誘電泳動力を粒子Pに作用させることができるから、粒子Pをより多くの流路に分けることができる。

【0068】
この場合、分析部14は、選別粒子Pの種類に応じた選別信号をいずれかのタイミング処理部35A,35Bに出力する。各タイミング処理部35A,35Bは、選別信号を受け取った場合のみ、選別粒子Pに対し誘電泳動力を生じさせる。例えば、分析部14は、選別粒子Pが第2電極アレイ52B側の分流路に流す必要があると判別した場合、タイミング処理部52Bにのみ選別信号を出力する。タイミング処理部52Bは、選別信号に対応し、電場を形成し作用領域に所定の誘電泳動力を生じさせる。選別信号を受け取らなかったタイミング処理部52Aは、第1電極アレイ52Aの電極51をグランドにする。上記のようにして誘電泳動力が作用した選別粒子Pは、第2電極アレイ52B側の所定の分流路に流れる。

【0069】
前後する粒子がいずれも選別粒子Pであり、先行する粒子Pを第1電極アレイ52A側、後行する粒子Pを第2電極アレイ52B側に選別する場合では、それら選別粒子Pが複数の電極51の作用領域を同時に流れる状態になる。この場合には、先行する粒子Pが入った作用領域に対応する第1電極アレイ52Aにおいて誘電泳動力を作用させると同時に、後行する粒子Pが入った作用領域に対応する第2電極アレイ52Bにおいて誘電泳動力を作用させる。このようにして先行する粒子Pを第1電極アレイ52A側、後行する粒子Pを第2電極アレイ52B側の分流路に流すことができる。

【0070】
上記第2実施形態の場合、選択された隣接する2つの電極51間に電圧を印加する例として、選択した2つの電極51のうち一方の電極51をグランド電極とし、他方の電極51にグランドを基準にした電圧を印加する場合、及び第1タイミングで一方の電極51にも他方の電極51に比べ低い電圧を印加する場合について説明したが、本発明はこれに限らない。

【0071】
例えば図9に示すように制御部15は、電源部PSに繋がる配線の一方に遅延回路59を有することとしてもよい。制御部15は、選択した隣接する2つの電極51の一方の電極51を基準とし、他方の電極51に位相遅れとなる電圧を印加する。例えば、1番目の電極51に電圧を印加し、1番目の電極51に印加した電圧に対し位相遅れとする電圧を2番目の電極51に印加する。3番目以降の電極は、2番目の電極と同じ位相遅れの電圧を印加する。これにより、1番目の電極と2番目の電極間の流路17中に、不均一な電場が形成される。

【0072】
なお、位相遅れがわずかでも存在すれば、1番目の電極51と2番目の電極51の間に電圧差が生じるため、誘電泳動力が生じる。このとき、位相遅れがπ/2以上であれば、標準的な操作方法(例えば1番目の電極51をグランドとし、2番目の電極51に交流電圧を印加する方法)と比較して、大きな誘電泳動力を生じさせることができる。特に、位相遅れがπとなったとき、もっとも効率よく誘電泳動力を生じさせることができる。

【0073】
本実施形態の場合、電極51の幅は、粒子Pの直径の約2倍である場合について説明したが本発明はこれに限らず、電極51の幅が粒子Pの直径に対し十分に小さくてもよい。電極51の幅が粒子Pの直径に対し十分に小さい場合、タイミング処理部35は、連続した4以上、例えば1~4番目の4つの電極51を選択し、2,3番目の電極51についての第1タイミングで、選択した電極51のうち両端の電極51である1,4番目の電極51をグランドにするとともに、両端の1,4番目の電極51の間の2,3番目の電極51に電圧を印加し、両端の1,3番目の電極51と2,3番目の電極51との間に電圧を印加する。隣接した2,3番目の電極51に電圧が印加されると、あたかも2,3番目の電極51をまとめた大きな電極と両端の1,4番目の電極51の間に電場を形成することができる。この場合、2,3番目の電極51の幅と間隔を合わせた長さを電極幅とし、当該電極幅が粒子Pの直径に対し、1倍以上5倍以下、より好ましくは1.5倍以上3倍以下、最も好ましくは2倍程度とされる。例えば、電極51の幅が粒子Pの直径の1/5倍であって、電極51同士の間隔が幅と同じ場合、グランドにする両端の電極51に挟まれる間の電極51を3~13本とすることにより、粒子Pの直径に対する幅を、好ましくは1倍以上5倍以下、より好ましくは1.5倍以上3倍以下、最も好ましくは2倍程度とすることができる。

【0074】
3.実施例
(実施例1)
図2に示す偏向部18を用いて粒子PのY方向の移動を確認した。リン酸緩衝生理食塩水からなる液滴を粒子Pとし、その粒子Pと液体としての油(ヘキサデカン)とを流路17に流した。粒子Pは、1秒間当たり2000個を流した。流路17における粒子Pの移動速度は、38.8cm/秒に調整し、粒子Pの間隔を194μmとした。粒子Pは、平均直径が63μmであった。

【0075】
流路17は、Y方向の長さが150μmとなるようにガラス製の基板16a上に、溝が形成されたPDMS(Polydimethylsiloxane)製の基板16bを接着させることで形成した。信号電極31と流路17との間隔及び第1、第2補助グランド電極32a、32bと流路17との間隔は25μm、固定グランド電極21と流路17との間隔は25μmとした。また、信号電極31の幅を100μm、第1補助グランド電極32aの幅を40μmとし、一対の信号電極31の各間隔を100μm、信号電極31と第1補助グランド電極32aとの各間隔を30μmとした。上流側の第2補助グランド電極32bは、上流側の信号電極31との間に30μmをあけて配し、流路17に沿って上流方向に600μmの幅で設けた。下流側の第2補助グランド電極32bについても同様であり、下流側の信号電極31との間に30μmをあけて配し、流路17に沿って下流方向に600μmの幅で設けた。固定グランド電極21は、Y方向の幅が40μmであり、X方向の幅が2000μmであり、X方向について、その中心が5本の信号電極31の中心に一致するように配した。電源部PSとしては、出力電圧(Vpp)が2310Vのものを用いた。

【0076】
上記の構成における偏向部18の誘電泳動力をシミュレーションした結果を図10のグラフに示す。図10のグラフは、横軸が信号電極31に近い流路17端面からのY方向の距離を示しており、縦軸が誘電泳動力の大きさの大小を示す指数値である。この指数値は、電場分布に依存した要素(grad(電場の二乗))である。すなわち、縦軸の指数値に粒子Pの大きさや特性(誘電率)に依存する係数を掛けることにより、誘電泳動力となる。以下では、便宜的に簡単の為、図10のグラフの縦軸の指数値を誘電泳動力と呼ぶ。なお、グラフの誘電泳動力は、例えば中央の信号電極31のX方向の中心位置からY方向に沿った誘電泳動力の変化を示している。

【0077】
図10のグラフ中の符号G1で示す曲線は、1個の信号電極31に単独で電圧を印加した場合の誘電泳動力を示し、符号G2で示す曲線は、5個全ての信号電極31に電圧を印加した場合の誘電泳動力を示している。また、符号G3は、第1、第2補助グランド電極32a、32bを設けない構成において、5個全ての信号電極31に電圧を印加した場合の誘電泳動力を示している。なお、各曲線G1~G3には、固定グランド電極21と各信号電極31との間の各位置における誘電泳動力の分布を合わせて示す。

【0078】
図10のグラフから分かるように、第1補助グランド電極32aを設けた構成では、1個の信号電極31に単独で電圧を印加した場合、十分な大きさの誘電泳動力が得られる。また、5個全ての信号電極31に電圧を印加した場合の誘電泳動力は、信号電極31に単独で電圧を印加した場合と比べて僅かに低下するが、それでもなお十分な誘電泳動力となっている。そして、このようなことから、様々な組み合わせで2個~4個の信号電極31に電圧を同時に印加した場合であっても、各信号電極31について十分な誘電泳動力が得られることが分かる。一方、第1補助グランド電極32aを設けない構成では、5個全ての信号電極31に電圧を印加した場合に得られる誘電泳動力は、第1補助グランド電極32aを設けた構成と比べてかなり小さくなることが分かる。

【0079】
実際に流路17に粒子Pを流し、1つの粒子Pを選別粒子Pとして、各信号電極31に順次に電圧を印加した。このときの流路17内の各粒子Pを観察した。このときの観察結果を図11に示す。なお、図11中で信号電極31に対して付した矢印は、その信号電極31に電圧を印加していることを示している。

【0080】
図11Aは、最上流の信号電極31に選別粒子Pが達する前の状態である。図11Bは、上流側から選別粒子が1番目の信号電極31の作用領域に入り、1番目の信号電極31に電圧を印加した状態である。同様に、図11C~図11Fは、2番目、3番目・・・5番目の信号電極31の作用領域に選別粒子Pが入り、それぞれ対応する信号電極31に電圧を印加した状態である。なお、選別粒子Pが作用領域に入っていない信号電極31には電圧を印加していない。

【0081】
また、図12に選別粒子Pとその前後の粒子PのY方向の移動量の変化を示す。図12に示すグラフは、その縦軸がY方向の位置を示し、基準位置におけるY方向の位置を基準「0」としてある。また、横軸がX方向の移動長であり、グラフ上部には、対応する信号電極31の番号(上流側から1番目、2番目・・・)とともに、信号電極31の幅(作用領域)を示す。図12のグラフにおいて、符号D1が選別粒子Pの移動長を、符号D2が選別粒子Pに先行する粒子Pの移動長、符号D3が選別粒子Pに続く粒子Pの移動長の変化をそれぞれ示している。

【0082】
図11、図12から分かるように、第1補助グランド電極32aを設けた構成では、選別粒子PだけがY方向に移動しており、その前後の粒子Pを含めて、他の粒子PをY方向に移動することなく、選別粒子Pだけを移動できることが確認できる。

【0083】
(実施例2)
偏向部の構成の違いによる粒子Pに作用する誘電泳動力の違いをシミュレーションした結果を図13に示す。図13は、縦軸が誘電泳動力(nN)、横軸が流路17内における粒子の中心位置(Y方向)を示す。粒子として直径70μmの液滴をモデルとした。グラフの右横には、用いた偏向部のモデルを示す。

【0084】
1番目のモデルは、流路を挟んで両側にそれぞれ信号電極部と第2補助グランド電極が配されている。流路の一方の側の信号電極部における信号電極のみに2000Vの電圧を印加し、その他の電極は0Vとした。

【0085】
2番目のモデルは、第1実施形態に対応し、流路の一方の側に信号電極部と第2補助グランド電極が配され、他方の側に固定グランド電極が配されている。信号電極部における信号電極のみに2000Vの電圧を印加し、その他の電極は0Vとした。

【0086】
3番目のモデルは、流路の一方の側に第1電極アレイが配され、他方の側に固定グランド電極が配されている。第1電極アレイの各電極は、交互に、位相がπずれた1000Vの電圧を印加した。

【0087】
4番目のモデルは、流路の一方の側にのみ信号電極部と第2補助グランド電極が配されている。信号電極部の信号電極のみに2000Vの電圧を印加し、その他の電極は0Vとした。

【0088】
5番目のモデルは、流路を挟んで両側にそれぞれ2個ずつ電極が配され、そのうちの1つの電極のみに2000Vの電圧を印加し、その他の電極は0Vとした。

【0089】
6番目のモデルは、流路の一方の側にのみ2個電極が配され、そのうちの1つの電極のみに2000Vの電圧を印加し、その他の電極は0Vとした。

【0090】
図13から明らかなように、全てのモデルにおいて、粒子に誘電泳動力を作用できることが確認できた。特に、モデル1,2,3において、大きい誘電泳動力が得られた。このことから、流路を挟んで、一方の側に電極アレイを配し、他方の側に固定グランド電極又はグランドにした電極アレイを配することが、より大きい誘電泳動力を粒子に作用させるうえで有効といえる。

【0091】
(実施例3)
第2実施形態の偏向部に対応した電極アレイと粒子に作用する誘電泳動力をシミュレーションした結果を図14~図18に示す。各図Aはシミュレーショに用いたモデル、各図Bは各粒子に作用する誘電泳動力の方向を矢印の向き、大きさを色の濃淡で表し、各図Cは図Bの拡大図である。電極51は、幅が粒子Pの直径の1/5倍であって、電極51同士の間隔を幅と同じとした。

【0092】
図14は、第1電極アレイ52Aが流路17の一側にのみ配されている。流路17には、粒子Pが等間隔で並んでいる。25個の電極51のうち、中央の3個の電極60に電圧を印加し、他の電極51は0Vとした。3個の電極60に最も近い目標粒子に作用する誘電泳動力は3.76×10(N/m)であった。これに対し、目標粒子の隣の粒子に作用する誘電泳動力は4.87×10(N/m)であり、目標粒子の13%であった。このことから目標粒子に作用させる誘電泳動力は、他の粒子にほとんど影響を与えないことが分かった。

【0093】
図15は、図14に対しさらに流路17を挟んで他側に第2電極アレイ52Bが配されている。一側の第1電極アレイ52Aのうち3個の電極60のみに電圧を印加し、他の電極51は0Vとした。目標粒子に作用する誘電泳動力は、4.51×10(N/m)であった。これに対し、目標粒子の隣の粒子に作用する誘電泳動力は4.69×10(N/m)であり、目標粒子の10%であった。したがって本モデルの方が、図14のモデルに比べ、目標粒子の隣の粒子に与える影響を低減できることが確認できた。

【0094】
図16は、流路17を挟んで両側に第1電極アレイ52A、第2電極アレイ52Bがそれぞれ配されている。隣り合う2個の粒子Pに対し、第1電極アレイ52A又は第2電極アレイ52Bの電極51に電圧を印加した。具体的には、第1電極アレイ52Aの3個の電極60に電圧を印加すると同時に、2個分の電極51だけ離れた第2電極アレイ52Bの3個の電極62に電圧を印加し、他の電極51は0Vとした。電極60,62に最も近い2個の目標粒子Pに作用する誘電泳動力は、大きさがそれぞれ2.84(N/m)であり、流路の幅方向の成分が大半を占めており、目標粒子Pの近くの印加電極に引き付けられる方向に向いていた。

【0095】
図17は、図16と同じ構成において、各粒子Pを中心として5個の電極60,62に電圧を印加した。この場合、電極60,62に最も近い2個の目標粒子Pに作用する誘電泳動力は、大きさがそれぞれ3.31(N/m)であり、流路の幅方向において逆向きの成分が多かった。

【0096】
図18は、図16と同じ構成において、各粒子Pを中心として7個の電極60,62に電圧を印加した。この場合、電極60,62に最も近い2個の目標粒子Pに作用する誘電泳動力は、大きさがそれぞれ1.58(N/m)であり、流路の幅方向において逆向きの成分も認められた。

【0097】
図16~図18の結果から、流路17を挟んで両側に第1電極アレイ52A、第2電極アレイ52Bがそれぞれが配された偏向部において、隣り合う粒子Pの一方を第1電極アレイ52A側、他方を第2電極アレイ52B側に移動できることが確認できた。

【0098】
図19に示すモデルを用いて、粒子Pに対し効率的に誘電泳動力を作用し得る最適な電極幅Wを調べた。モデルは、流路67を挟んで、グランド電極64と、信号電極65及び第1補助グランド電極66とを備える。粒子Pは直径dが60μmの液滴とした。流路67の幅は180μmとした。その結果を図20に示す。本図より、信号電極65の幅Wは、粒子Pの直径に対し、1倍以上5倍以下であれば25nN以上の誘電泳動力が得られ、1.5倍以上3倍以下であれば40nN以上の誘電泳動力が得られる。本図に示すモデルにおいて、誘電泳動力は、粒子Pに対する信号電極65の幅Wが2倍程度のときが最大で、48nNであった。

【0099】
図19に示すモデルを用いて、信号電極65の幅Wと、信号電極65と粒子P間の距離との関係をシミュレーションした結果を図21に示す。粒子Pと信号電極65の距離が近い程、信号電極65の幅Wが小さい方が、より高い誘電泳動力が作用することが確認できた。
【符号の説明】
【0100】
10 粒子分取装置
11 流路デバイス
12 供給部
13 検出部
14 分析部
15 制御部
16 基板
17 マイクロ流路
18 偏向部
21 固定グランド電極
22 信号電極部(電極アレイ)
31 信号電極(電極)
32a 第1補助グランド電極(電極)
32b 第2補助グランド電極(電極)
35 タイミング処理部
36 スイッチ部
P 粒子
PS 電源部

図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20