TOP > 国内特許検索 > 抗腫瘍剤 > 明細書

明細書 :抗腫瘍剤

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第6664815号 (P6664815)
登録日 令和2年2月21日(2020.2.21)
発行日 令和2年3月13日(2020.3.13)
発明の名称または考案の名称 抗腫瘍剤
国際特許分類 A61K  31/713       (2006.01)
A61K  31/7105      (2006.01)
A61K  48/00        (2006.01)
A61P  35/00        (2006.01)
A61P  35/02        (2006.01)
FI A61K 31/713 ZNA
A61K 31/7105
A61K 48/00
A61P 35/00
A61P 35/02
請求項の数または発明の数 11
全頁数 20
出願番号 特願2016-574831 (P2016-574831)
出願日 平成28年2月10日(2016.2.10)
国際出願番号 PCT/JP2016/053960
国際公開番号 WO2016/129633
国際公開日 平成28年8月18日(2016.8.18)
優先権出願番号 2015024713
優先日 平成27年2月10日(2015.2.10)
優先権主張国 日本国(JP)
審査請求日 平成31年2月8日(2019.2.8)
特許権者または実用新案権者 【識別番号】506218664
【氏名又は名称】公立大学法人名古屋市立大学
発明者または考案者 【氏名】近藤 豊
【氏名】勝島 啓佑
個別代理人の代理人 【識別番号】100091096、【弁理士】、【氏名又は名称】平木 祐輔
【識別番号】100118773、【弁理士】、【氏名又は名称】藤田 節
審査官 【審査官】高橋 樹理
参考文献・文献 MESEURE, D. et al.,Biopathological Signification of the Long Intergenic Non Coding RNA TUG1 Dysregulation across Invasi,Modern Pathology,2014年,Vol.27, No.S2,p.68A,ISSN 0893-3952
XU, Y. et al.,Upregulation of the long noncoding RNA TUG1 promotes proliferation and migration of esophageal squam,Tumor Biology,2014年10月,Vol.36,p.1643-1651,ISSN 1010-4283
ZHANG, Q. et al.,Down-regulation of long non-coding RNA TUG1 inhibits osteosarcoma cell proliferation and promotes ap,Asian Pacific Journal of Cancer Prevention,2013年,Vol.14, No.4,p.2311-2315,ISSN 1513-7368
HAN, Y. et al.,Long intergenic non-coding RNA TUG1 is overexpressed in urothelial carcinoma of the bladder,Journal of Surgical Oncology,2013年,Vol.107,p.555-559,ISSN 1096-9098
調査した分野 A61K 31/713
A61K 31/7105
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
特許請求の範囲 【請求項1】
腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する核酸を有効成分として含む、TUG1遺伝子を正常組織と比べて高発現する腫瘍を有する被験体を治療又は予防するための組成物であって、前記核酸が、TUG1遺伝子の転写体RNAの配列番号1、2又は3の塩基配列において、それぞれ、ヌクレオチド番号1044~1062、1044~1062、又は1044~1062、ヌクレオチド番号2997~3458、2941~3398、又は2941~3412、並びに/或いは、ヌクレオチド番号3855~5181、3785~5111、又は3799~5125の領域を標的とする核酸であり、かつ前記腫瘍が、脳腫瘍、大腸癌、前立腺癌、肝臓癌、肺癌、白血病及びリンパ腫からなる群から選択されることを特徴とする、前記組成物。
【請求項2】
前記核酸が、TUG1遺伝子の転写体RNAに対する、siRNA、その前駆体RNA、アンチセンスRNA、若しくはその修飾RNA、又はアンチセンスDNAである、請求項1に記載の組成物。
【請求項3】
前記核酸が、配列番号4~11の塩基配列からなるセンス鎖と、該センス鎖のそれぞれに相補的な配列番号12~19の塩基配列からなるアンチセンス鎖とを含むsiRNA、その前駆体RNA又はその修飾RNAのいずれか1つ又は2つ以上の組み合わせである、請求項1又は2に記載の組成物。
【請求項4】
前記修飾RNAが、1つ又は2つ以上の修飾ヌクレオチド又はデオキシリボヌクレオチドを含む、請求項2又はに記載の組成物。
【請求項5】
前記デオキシリボヌクレオチドを含む修飾RNAが、配列番号20~27の塩基配列からなるセンス鎖と、該センス鎖のそれぞれに相補的な配列を含む配列番号28~35の塩基配列からなるアンチセンス鎖とを含むsiRNA、或いは、配列番号28~35の塩基配列からなるアンチセンスRNA/DNAキメラである、請求項に記載の組成物。
【請求項6】
前記修飾ヌクレオチドを含む修飾RNAが、各末端に、2'-O、4'-Cメチレンブリッジ(-O-CH-)もしくは2'-O,4'-Cエチレンブリッジ(-O-CHCH-)を有するロックされた少なくとも2つのLNA修飾ヌクレオチドを含むLNA修飾アンチセンスRNAである、請求項に記載の組成物。
【請求項7】
前記修飾RNAが、配列番号36~38、51~53のいずれかの塩基配列からなるLNA修飾アンチセンスRNAである、請求項2、のいずれか1項に記載の組成物。
【請求項8】
前記核酸が、TUG1遺伝子の転写体RNAに対する、siRNA、その前駆体RNA若しくはアンチセンスRNAをコードするDNA、又はアンチセンスDNA、を含むベクターである、請求項1~5のいずれか1項に記載の組成物。
【請求項9】
前記腫瘍が、脳腫瘍である、請求項1~8のいずれか1項に記載の組成物。
【請求項10】
前記核酸が、(i)ホスホロチオエート結合、ホスホロジチオエート結合、アルキルホスホネート結合もしくはホスホロアミデート結合によるホスホジエステル結合の置換、(ii)2'-O,4'-Cメチレンブリッジ(-O-CH-)もしくは2'-O,4'-Cエチレンブリッジ(-O-CHCH-)、(iii)2’-メトキシエトキシもしくは2’-メトキシ、及び(iv)2’-ハロゲンからなる群から選択される修飾を含む1つ又は2つ以上の修飾リボヌクレオチド、並びに/或いは、1つ又は2つ以上のデオキシリボヌクレオチドを含む修飾RNAである、請求項1~9のいずれか1項に記載の組成物。
【請求項11】
前記siRNAの前駆体RNAが、shRNAである、請求項2又は3に記載の組成物。
発明の詳細な説明 【技術分野】
【0001】
本発明は、TUG1遺伝子を高発現する腫瘍に対する抗腫瘍剤に関する。
【背景技術】
【0002】
TUG1は、taurine upregulated gene 1の略称であり、げっ歯類の網膜の分化に必要なノンコーディングRNAとしてYoungら(非特許文献1)などによって特定されたスプラシングされたポリアデニル化RNAであり、網膜や脳など神経系の組織に強い発現を示す。
【0003】
癌又は腫瘍でのTUG1の役割について、例えば非小細胞肺癌(NSCLC)ではTUG1をノックダウンすると細胞増殖を促進することがZhangら(非特許文献2)によって記載されている。これとは逆に、特定の癌又は腫瘍においてTUG1が過剰発現されており、TUG1発現を抑制すると、増殖が抑制されるという報告もある。例えば、Xuら(非特許文献3)は、TUG1のサイレンシングによって食道扁平上皮癌(ESCC)細胞の増殖が抑制され細胞周期の進行が阻止されると記載している。また、Zhangら(非特許文献4)は、骨肉腫細胞株でTUG1が過剰発現されていること、また、TUG1発現を抑制すると骨肉腫細胞がアポトーシスを起こすことを記載している。さらにまた、Hanら(非特許文献5)は、尿路上皮癌でTUG1が過剰発現され、高ステージと関係があること、また、TUG1をサイレンシングすると増殖阻害やアポトーシス誘導が起こることを記載している。
【先行技術文献】
【0004】

【非特許文献1】T.L.Young et al.,Curr.Biol.,15(6):501-512,2005
【非特許文献2】E.B.Zhang et al.,Cell Death Dis.2014 May,22;5:e1243.doi:10.1038/cddis.2014.201
【非特許文献3】Y.Xu et al.,Tumor Biology Oct 31,2014,doi:10,1007/s13277.014.2763.6
【非特許文献4】Q.Zhang et al.,Asian Pacific J Cancer Prev,14(4):2311-2315,2013
【非特許文献5】Y.Han et al.,J Surg Oncol,107:555-559,2013
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的は、神経膠芽腫(glioblastoma multiforme: GBM)などの脳腫瘍を含む、TUG1を高発現する癌又は腫瘍を予防又は治療することができる核酸医薬を提供することである。
【0006】
GBMは、原発性脳腫瘍のなかで最も悪性度が高く、未だに改善や根治に至ることが極めて困難な腫瘍である。GBMは、ゲノム異常の他に非翻訳RNAやヒストン修飾、DNAメチル化などのエピゲノム異常を有し、これらエピゲノム異常がGBMの悪性化に寄与することが示唆されている。
【0007】
本発明者らは、今回、GBMを含むいくつかの腫瘍にlncRNA(long noncoding RNA)の一つであるTUG1が高発現しており、それを標的とした核酸が該腫瘍の有意な退縮に有効であることを見出し本発明を完成させた。
【課題を解決するための手段】
【0008】
したがって、本発明は、以下の特徴を包含する。
【0009】
(1)腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する核酸を有効成分として含む、TUG1遺伝子を正常組織と比べて高発現する腫瘍を有する被験体を治療又は予防するための組成物。
【0010】
(2)上記核酸が、TUG1遺伝子の転写体RNAに対する、siRNA、その前駆体RNA、アンチセンスRNA、若しくはその修飾RNA、又はアンチセンスDNAである、(1)に記載の組成物。
【0011】
(3)上記核酸が、TUG1遺伝子の転写体RNAの配列番号1、2又は3の塩基配列において、それぞれ、ヌクレオチド番号1044~1062、1044~1062、又は1044~1062(図2における#1の領域)、並びに/或いは、ヌクレオチド番号2997~5181、2941~5111、又は2941~5125(図2における#5-#4までの領域)の領域を標的とする、(1)又は(2)に記載の組成物。
【0012】
(4)上記核酸が、配列番号4~11の塩基配列からなるセンス鎖と、該センス鎖のそれぞれに相補的な配列番号12~19の塩基配列からなるアンチセンス鎖とを含むsiRNA、その前駆体RNA又はその修飾RNAのいずれか1つ又は2つ以上の組み合わせである、(1)~(3)のいずれかに記載の組成物。
【0013】
(5)上記修飾RNAが、1つ又は2つ以上の修飾ヌクレオチド又はデオキシリボヌクレオチドを含む、(2)~(4)のいずれかに記載の組成物。
【0014】
(6)上記デオキシリボヌクレオチドを含む修飾RNAが、配列番号20~27の塩基配列からなるセンス鎖と、該センス鎖のそれぞれに相補的な配列を含む配列番号28~35の塩基配列からなるアンチセンス鎖とを含むsiRNA、或いは、配列番号28~35の塩基配列からなるアンチセンスRNA/DNAキメラである、(5)に記載の組成物。
【0015】
(7)上記修飾ヌクレオチドを含む修飾RNAが、各末端に、2'-O、4'-Cメチレンブリッジを有するロックされた少なくとも2つのLNA修飾ヌクレオチドを含むLNA修飾アンチセンスRNAである、(5)に記載の組成物。
【0016】
(8)上記修飾RNAが、配列番号36~38、51~53のいずれかの塩基配列からなるLNA修飾アンチセンスRNAである、(2)~(3)、(5)~(7)のいずれかに記載の組成物。
【0017】
(9)上記核酸が、TUG1遺伝子の転写体RNAに対する、siRNA、その前駆体RNA若しくはアンチセンスRNAをコードするDNA、又はアンチセンスDNA、を含むベクターである、(1)~(6)のいずれかに記載の組成物。
【0018】
(10)上記腫瘍が、脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病及びリンパ腫からなる群から選択される、(1)~(9)のいずれかに記載の組成物。
【0019】
(11)上記(1)~(10)のいずれかに記載の組成物を被験体に投与することを含む、TUG1遺伝子を正常組織と比べて高発現する腫瘍を有する被験体を治療するための方法。
【0020】
(12)上記腫瘍が、脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病及びリンパ腫からなる群から選択される、(11)に記載の方法。
【0021】
本発明は、脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病、リンパ腫などのTUG1遺伝子を正常組織と比べて高発現する腫瘍において、腫瘍幹細胞の増殖抑制を可能にし、それによって腫瘍を退縮させ、かつ腫瘍の転移を抑制する効果を有する。
【0022】
本明細書は本願の優先権の基礎となる日本国特許出願番号2015-024713号の開示内容を包含する。
【図面の簡単な説明】
【0023】
【図1】この図は、種々の腫瘍細胞株におけるTUG1の発現レベルを示す。図中、GSCはグリオーマ幹細胞株を示し、T98、U251、SK-MG1及びAO2はグリオーマ細胞株を示し、MCF7、MDA231、SK-BR3及びT47Dは乳癌細胞株を示し、Lovo、Caco-2、RKO、SW48、SW480及びSW1083は大腸癌細胞株を示し、PC3、LNCap及びVcapは前立腺癌細胞株を示し、HepG2、Huh7及びA549は肝臓癌細胞株を示し、H920及びPC9は肺癌細胞株を示し、Jurkatは白血病細胞株を示し、Rajiはバーキットリンパ腫細胞株を示し、並びに、Pfeifferはリンパ腫細胞株を示す。発現レベルは、内部標準GAPDHに対するTUG1の相対発現比率で表した。
【図2】この図は、TUG1に対するsiRNAターゲット配列の位置と、グリオーマ幹細胞株GSCに対する増殖抑制効果を示す。図中、si-TUG1#1~si-TUG1#14(塩基配列:図3参照)は、作製された修飾siRNA(RNA/DNAキメラ;センス鎖及びアンチセンス鎖の3'末端の「dCdA」等はDNA配列である。)を表し、TUG1配列上の標的位置を示す。また、抑制効果は、コントロールsiRNA(「NC」;Silencer Select Negative Control #1 siRNA(ライフテクノロジーズ社、カタログ番号4390843))に対するTUG1/GAPDH(内部標準)の相対発現比率で表す。*は、統計的有意(p<0.01)を示す。
【図3】この図は、図2で試験されたsi-TUG1#1~si-TUG1#14の塩基配列(センス鎖配列とアンチセンス鎖配列)を示す。抑制効果の得られたsiRNAは、si-TUG1#1~si-TUG1#8であり(図3A)、si-TUG1#9~si-TUG1#14では抑制効果が低いか、又は抑制効果が得られなかった(図3B)。
【図4】この図は、si-TUG1#1~si-TUG1#8(「#1」~「#8」と表示した。)によるグリオーマ幹細胞株GSCにおけるTUG1の発現抑制効果の評価を示す。各修飾siRNA導入3日後におけるTUG1の発現量(TUG1/GAPDH(内部標準))をコントロールsiRNA(「NC」;Silencer Select Negative Control #1 siRNA(ライフテクノロジーズ社、カタログ番号4390843))に対する相対値で示している。*は、統計的有意(p<0.01)を示す。
【図5】この図は、si-TUG1#1~si-TUG1#8(「#1」~「#8」と表示した。)によるグリオーマ幹細胞株GSCに対する抗増殖効果の評価を示す。各修飾siRNA導入3日後におけるコントロールsiRNA(「NC」)に対するGSCの生細胞数の相対値を示している。*は、統計的有意(p<0.01)を示す。
【図6】この図は、配列番号13の塩基配列に基づいて作製したLNA修飾アンチセンスRNA、すなわち、LNA-TUG1-1#1(配列番号36)、LNA-TUG1-1#2(配列番号37)及びLNA-TUG1-1#3(配列番号38)を示す。LNA修飾を行った部位を下線で示す。
【図7】この図は、LNA-TUG1-1#1(配列番号36)、LNA-TUG1-1#2(配列番号37)及びLNA-TUG1-1#3(配列番号38)の3種のLNA修飾アンチセンスRNA、並びにsi-TUG1#2(センス:配列番号21及びアンチセンス:配列番号29)、によるTUG1発現抑制効果の評価を示す。比較のため、si-TUG1#2及びコントロールsiRNA(「NC」)を用いた。各siRNA及びLNA修飾アンチセンスRNAをグリオーマ幹細胞株GSCに導入し、3、7、10日後(d3、d7、d10)におけるコントロールsiRNA(「NC」)に対する相対TUG1発現量を示す。発現量は、TUG1/GAPDH(内部標準)である。*は、統計的有意(p<0.01)を示す。
【図8】この図は、グリオーマ幹細胞株GSC(初期細胞数1×10)における表示の各siRNA及び各LNA修飾アンチセンスRNA(終濃度30nM)による抗腫瘍細胞増殖抑制効果の評価を示す。si-TUG1#2(センス:配列番号21及びアンチセンス:配列番号29)及びLNA修飾アンチセンスRNA(LNA-TUG1-1#1(配列番号36)、LNA-TUG1-1#2(配列番号37)及びLNA-TUG1-1#3(配列番号38))の各々をGSCに導入10日後におけるコントロールsiRNA(「NC」)に対するGSCの生細胞数の相対値を示す。*は、統計的有意(p<0.01)を示す。
【図9】この図は、配列番号17の塩基配列に基づいて作製したLNA修飾アンチセンスRNA、すなわち、LNA-TUG1-2#1(配列番号51)、LNA-TUG1-2#2(配列番号52)及びLNA-TUG1-2#3(配列番号53)を示す。LNA修飾を行った部位を下線で示す。
【図10】この図は、LNA-TUG1-2#1(配列番号51)、LNA-TUG1-2#2(配列番号52)及びLNA-TUG1-2#3(配列番号53)の3種のLNA修飾アンチセンスRNA、並びにsi-TUG1#6(センス:配列番号25及びアンチセンス:配列番号33)、によるTUG1発現抑制効果の評価を示す。比較のため、si-TUG1#6及びコントロールsiRNA(「NC」)を用いた。各siRNA及びLNA修飾アンチセンスRNAをグリオーマ幹細胞株GSCに導入し、3、7、10日後(d3、d7、d10)におけるコントロールsiRNA(「NC」)に対する相対TUG1発現量を示す。発現量は、TUG1/GAPDH(内部標準)である。*は、統計的有意(p<0.01)を示す。
【図11】この図は、グリオーマ幹細胞株GSC(初期細胞数1×10)における表示の各siRNA及び各LNA修飾アンチセンスRNA(終濃度30nM)による抗腫瘍細胞増殖抑制効果の評価を示す。si-TUG1-2#6(センス:配列番号25及びアンチセンス:配列番号33)及びLNA修飾アンチセンスRNA(LNA-TUG1-2#1(配列番号51)、LNA-TUG1-2#2(配列番号52)及びLNA-TUG1-2#3(配列番号53))の各々をGSCに導入10日後におけるコントロールsiRNA(「NC」)に対するGSCの生細胞数の相対値を示す。*は、統計的有意(p<0.01)を示す。
【図12】この図は、TUG1阻害による前立腺癌細胞株PC3の増殖抑制効果を示す。図12Aは、si-TUG1#2又はコントロールsiRNA(「NC」)を作用したときのPC3株におけるTUG1発現レベルを示し、図12Bは、それぞれのsiRNAを作用したときのPC3株の相対細胞増殖率を示す。*は、統計的有意(p<0.01)を示す。
【図13】この図は、グリオーマ幹細胞株GSCを皮下に移植したヌードマウスにLNA-TUG1-1#1((配列番号36)又はコントロールsiRNA(「NC」)を3日毎に静脈内投与して治療を施したときの腫瘍サイズの経日変化を示す。*は、統計的有意(p<0.01)を示す。
【発明を実施するための形態】
【0024】
近年non-coding RNAの発現異常と癌との関係が注目されている。特にマイクロRNA(miRNA)は、癌の診断分野において多数見出されている。癌又は腫瘍の種類によってmiRNAの種類も異なるとともに、正常細胞と比べて過剰発現するmiRNAもあれば、逆に減少するmiRNAも混在しているため、複雑化している。また、long non-coding RNA(lncRNA)についてはmiRNAと比べて報告数が少ないが、lncRNAと癌との関係において過剰発現する場合と発現が減少する場合の両方が知られている。

【0025】
本発明者らは、腫瘍のなかでも治療が難しい脳腫瘍について治療剤の開発を行ってきた。原発性脳腫瘍のなかでも最も悪性度の高い神経膠芽腫(GBM)は、改善が極めて難しい腫瘍である。GBMは、ゲノム異常に加えて非翻訳RNAやヒストン修飾、DNAメチル化などのエピゲノム異常を有し、これらのエピゲノム異常がGBMの悪性化に寄与すると示唆されている。上記の非翻訳RNAの1つであるlncRNAの遺伝子発現制御は、細胞の分化や増殖などの様々な生命現象に深く関わり、近年では癌の悪性化への関与も報告されている(R.A.Gupta et al.,Nature,464:1071-1076,2010;L.Yang et al.,Nature,500:598-602,2013;J.H.Yuan et al.,Cancer Cell,25:666-681,2014;A.M.Khalil et al.,PNAS,106:11667-11672,2009)。

【0026】
今回、本発明者らは、ヒトGBMから樹立したグリオーマ幹細胞(glioma stem cell:GSC)において、lncRNAの1つであるTUG1が正常組織と比べて高発現しており、TUG1の発現抑制がGSCの増殖抑制に寄与することを見出し、TUG1を標的とした核酸医薬がGBM治療に有効であることをさらに見出した。さらに今回、本発明者らは、このような知見を踏まえて、これまで報告のないいくつかの腫瘍についてもTUG1が高発現していること、そしてこれらの腫瘍においてもGSCと同様に腫瘍幹細胞を標的とする該核酸医薬により抗腫瘍効果が期待できることを見出した。

【0027】
上記の背景技術で記載したように、腫瘍の治療に関して、TUG1は腫瘍の種類によって発現量が異なることが知られているが、高発現される特定の腫瘍に対してもTUG1の発現抑制が治療有効であるかについては十分な証明がされていない。また、TUG1と腫瘍幹細胞との関係に関する報告はない。

【0028】
TUG1はp53によって誘導され細胞周期に関係する特定の遺伝子を抑制する役割を有しており、TUG1を含むlncRNAがp53転写経路において腫瘍増殖抑制的に機能する可能性も仮説的に指摘されているがよくわかっていない(A.M.Khalil et al.,PNAS,106:11667-11672,2009)。

【0029】
本発明者らは、今回、このような状況のなかで、脳腫瘍などのいくつかの腫瘍が腫瘍幹細胞においてTUG1の発現抑制によって増殖抑制されることを見出した。すなわち、本発明は、腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する核酸を有効成分として含む、脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病、リンパ腫などのTUG1遺伝子を正常組織と比べて高発現する腫瘍を有する被験体を治療又は予防するための組成物を特徴とする。

【0030】
以下に、本発明についてさらに具体的に説明する。
1.TUG1遺伝子の高発現を抑制する核酸
本発明の組成物の有効成分は、腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する核酸である。

【0031】
本明細書中の「TUG1遺伝子の高発現を抑制する」という用語について、正常組織(又は正常細胞)において正常に発現するTUG1のレベル(もしくは量)より多い異常な状態を「高発現」と称し、該用語は、TUG1遺伝子の高発現を正常レベル又はそれ以下のレベルに抑制すること、並びに、TUG1遺伝子の転写体であるlncRNAの機能を抑制することの意味で使用されている。ここでlncRNAの機能は、本発明では、癌若しくは腫瘍の増殖、進行又は転移に関係する機能をいう。本発明では、腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する核酸を被験体に投与することによって、例えば脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病、リンパ腫などの腫瘍を有する被験体においてTUG1の発現を抑制し、それによって該腫瘍の増殖を抑制する。

【0032】
被験体は、動物であれば制限はないが、好ましくは哺乳動物、例えばヒト、イヌ、ネコ、ウマ、ウシ、その他の哺乳動物、例えば動物園などで飼育されている哺乳動物であり、好ましい動物はヒトである。このような動物のなかでTUG1の遺伝子が高発現されている腫瘍をもつ被験体が本発明の対象動物である。

【0033】
TUG1は、上記動物のTUG1であり、例えば、ヒトTUG1遺伝子の転写体(long non-coding RNA)として公知のNR_110492(配列番号1)、NR_110493(配列番号2)又はNR_002323(配列番号3)の塩基配列、或いは、これらの各塩基配列において1若しくは数個のヌクレオチドの欠失、置換、付加又は挿入を含む塩基配列、或いは、上記の各塩基配列と70%以上、80%以上又は90%以上、好ましくは95%以上、さらに好ましくは98%以上もしくは99%以上の配列同一性を有する塩基配列からなる天然バリアントであるTUG1である。

【0034】
本明細書中で使用される「数個」とは、2~10の整数、好ましくは2~5の整数をいう。また、配列同一性は、塩基配列等の配列アラインメントをとるための公知のアルゴリズム、例えばBLAST、を使用して決定されうる。

【0035】
本発明においてTUG1遺伝子の高発現を抑制する核酸は、例えば、RNA干渉(RNAi)作用を有する、siRNA若しくはその前駆体RNA、又はそれらの修飾RNA、或いは、TUG1遺伝子の転写体RNAに対するsiRNA又はその前駆体RNAをコードするDNAを含むベクターを包含する。上記核酸の他の例は、アンチセンスRNA若しくはアンチセンスDNA、該アンチセンスRNAをコードするDNA若しくは該アンチセンスDNAを含むベクター、又はその修飾核酸である。

【0036】
本発明における核酸は、腫瘍幹細胞においてTUG1遺伝子の高発現を抑制する、かつ、腫瘍の増殖を抑制するかぎり核酸の種類や核酸の配列を特定のものに限定しないが、上記被験体のTUG1遺伝子の転写体RNAの塩基配列内の領域、例えばヒトTUG1遺伝子の転写体RNAの塩基配列である例えば配列番号1、2又は3の塩基配列において、それぞれ、ヌクレオチド番号1044~1062、1044~1062、又は1044~1062(図2における#1の領域)、並びに/或いは、ヌクレオチド番号2997~5181、2941~5111、又は2941~5125(図2における#5-#4までの領域)の領域を標的とすることが好ましい。

【0037】
TUG1に対しRNAi作用を有するsiRNAもしくはその前駆体RNAについて、siRNAは、TUG1遺伝子の転写体RNAの一部に相補的な18~25ヌクレオチド、好ましくは20~24ヌクレオチド、さらに好ましくは21~23ヌクレオチドからなる、かつRNAi(RNA干渉)作用を有する、センスRNAとアンチセンスRNAとからなる二本鎖RNAである。センスRNAとアンチセンスRNAの各3'末端には、2~5ヌクレオチド、好ましくは2ヌクレオチドの突出末端、例えばUU(DNAの場合、TT)、を有していてもよい。突出末端は、RISCと相互作用する可能性が指摘されている(W.R.Strapps et al.,Nucleic Acids Res.2010 Aug;38(14):4788-4797)。

【0038】
RNAi作用は、当業界で一般的に使用される意味を有しており、短い二本鎖RNA(siRNA)がその塩基配列特異的に標的転写体RNAを分解し、その遺伝子発現を抑制する現象である。

【0039】
上記前駆体RNAは、siRNAのpriRNA、preRNA、shRNAのいずれかである。priRNAは、TUG1遺伝子に対する転写体RNA配列、例えば配列番号1、2又は3の塩基配列を有する。preRNAは、priRNAの酵素的プロセシングにより産生されるpreshRNAである。shRNAは、short hairpin RNAの略称であり、preshRNAから酵素的に産生された、siRNAと同じ配列のセンス鎖とアンチセンス鎖とのステム、ならびにヘアピンループからなる。shRNAのヘアピン構造は細胞機構によってsiRNAへと切断され、RNA誘導サイレンシング複合体(RISC)と結合し、この複合体はsiRNAと相補的な配列をもつ転写体RNAに結合し、それを切断する。

【0040】
本発明の核酸は、例えば、配列番号4~11の塩基配列からなるセンス鎖と、該センス鎖のそれぞれに相補的な配列番号12~19の塩基配列からなるアンチセンス鎖とを含むsiRNAのいずれか1つ又は2つ以上の組み合わせである。

【0041】
或いは、本発明の核酸は、TUG1遺伝子の転写体RNAに対する、上記siRNA、その前駆体RNA若しくはアンチセンスRNAをコードするDNA、又はアンチセンスDNA、を含むベクターである。好ましい前駆体RNAはshRNAである。

【0042】
上記ベクターは、細胞内に導入されたとき上記DNAを発現可能にする調節配列を含む、例えば、アデノ随伴ウイルス、レトロウイルス、レンチウイルス、センダイウイルスなどのウイルスベクター、或いは、プラスミド、人工染色体(例えば、細菌人工染色体(BAC),酵母人工染色体(YAC)、ヒト人工染色体(HAC)、又はマウス人工染色体(MAC))などの非ウイルスベクターのいずれかである。好ましいベクターは、安全性の面からプラスミド、センダイウイルスベクター、アデノ随伴ウイルスベクターなどである。プラスミドは、哺乳動物細胞、好ましくはヒト細胞で使用可能であり、かつ安全性が証明されているプラスミドが好ましい。具体的には、プラスミドベクターとしては、例えば特表2014-508515号公報に記載されるようなベクター、例えばpSilencer4.1-CMV(Ambion)、pcDNA3、pcDNA3.1/hyg、pHCMV/Zeo、pCR3.1、pEF1/His、pIND/GS、pRc/HCMV2、pSV40/Zeo2、pTRACER-HCMV、pUB6/V5-His、pVAX1、pZeoSV2、pCI、pSVL、pKSV-10、pBPV-1、pML2d、pTDT1などの非ウイルスベクターが挙げられるが、これらに限定されないものとする。

【0043】
上記調節配列は、プロモーター、転写開始点、ターミネーターなどを含み、必要に応じてエンハンサー、選択マーカー配列などを含むことができる。プロモーターは、特定の宿主細胞内で上記DNAの転写開始を促進するかぎり任意の内因性若しくは外因性プロモーターを使用できるが、例えばU6もしくはH1プロモーターであり、これにより、細胞内に導入後にベクターは恒常的に発現されるし、また、娘細胞に受け継がれ、遺伝子サイレンシングの効果も受け継がれる。

【0044】
一般にRNAは、生体内で、例えば血中等でリボヌクレアーゼにより分解されやすいためにかなり不安定である。これを解消するため、本発明では、好ましくはセンス鎖及びアンチセンス鎖のヌクレオチドの修飾が行われる。修飾は、少なくとも1つの、好ましくは複数のヌクレオチドの修飾、例えば、塩基の修飾、糖の修飾、リン酸ジエステル部の修飾、又はそれらの組み合わせ、並びに/或いは、環状構造(二本鎖のステムと2つのループとからなる構造)、DNAを含むキメラ構造などを含むことができる。修飾は、非限定的に以下のものが挙げられる。

【0045】
RNAもDNAもともに糖、塩基及びホスホジエステル結合からなるヌクレオチドの連鎖によって構成される核酸であり、それらの核酸の構造上の違いは、ヌクレオチド中の糖、すなわち、RNAの糖はリボースであり、一方DNAの糖は2'位の水酸基が水素で置換された2'-デオキシリボースであり、またさらなる違いは塩基、すなわち、RNAの塩基はアデニン(A)、ウラシル(U)、グアニン(G)及びシトシン(C)から構成され、一方DNAの塩基は、アデニン(A)、チミン(T)、グアニン(G)及びシトシン(C)から構成されることにある。

【0046】
バックボーンであるリン酸ジエステル部の修飾には、ホスホジエステル結合に代えて例えばホスホロチオエート、ホスホロジチオエート、アルキルホスホネート、又はホスホロアミデート結合とする修飾による置換が含まれる。

【0047】
塩基及び糖の修飾には、特表2007-525192号公報に例示されるような、2’-デオキシ-2’-ハロ(例えばフルオロ、クロロ又はブロモ)ヌクレオチド、2’-デオキシ-2’-ハロ(例えばフルオロ、クロロ又はブロモ)ピリミジンヌクレオチド、2’-デオキシ-2’-ハロ(例えばフルオロ、クロロ又はブロモ)シチジンヌクレオチド、2’-デオキシ-2’-ハロ(例えばフルオロ、クロロ又はブロモ)ウリジンヌクレオチド、2’-デオキシ-2’-ハロ(例えばフルオロ、クロロ又はブロモ)グアノシンヌクレオチド、2’-O-メチルプリンヌクレオチド、2'-デオキシリボヌクレオチド、ロックされた核酸ヌクレオチド(Locked Nucleic Acid(LNA);例えば2'-O,4'-Cメチレンブリッジ(-O-CH-)修飾ヌクレオチド、2'-O,4'-Cエチレンブリッジ(-O-CHCH-)修飾ヌクレオチド、等)、2’-メトキシエチルヌクレオチド、4’-チオヌクレオチド、2’-メトキシエトキシ(2’-MOE)ヌクレオチド、2’-メトキシ(2’-OMe)ヌクレオチド、2’-デオキシ-2’-クロロヌクレオチド、2’-アジドヌクレオチドなどが挙げられる。また、2'-修飾ヌクレオチドについて、上記例示に加えて、例えば特表2010-507579号公報に記載されるような、糖の2'位を、例えば、ハロゲン、アリル、アミノ、アジド、アセトキシ、アルキル、アルコキシ、カルボキシ、アシル、カルボニルオキシ、ベンジル、フェニル、ニトロ、チオール、チオアルコキシ、アリール、アルケニル、アルキニル、シアノ、OCN、CF、OCF、N(R)-アルキル、O-アルケニル、S-アルケニル、N(R)-アルケニル、O-アルキニル、S-アルキニル、N(R)-アルキニル、O-アルキレニル-O-アルキル、アルキルアリール、アラルキル、O-アルキルアリール、O-アラルキル、O(CHSCH、O-(CH-O-N(R)(R)、又はO-CH-C(=O)-N(R)(R)によって置換しうる。ここで、各RとRは、独立的に、H、アミノ保護基、又は置換若しくは非置換C-C10アルキルである。

【0048】
LNA修飾ヌクレオチドは、今西武(Takeshi Imanishi)らによって開発された人工核酸(M.Abdur Rahman,Sayori Seki,Satoshi Obika,Haruhisa Yoshikawa,Kazuyuki Miyashita,Takeshi Imanishi:「Design,synthesis and properties of 2',4'-BNA:A bridged nucleic acid analogue」J.Am.Chem.Soc.130.4886-4896(2008))であり、本発明のsiRNAの塩基配列中の糖部にLNA(「BNA(Bridged Nucleic Acid)」とも称する。)を導入したヌクレオチドは、著しくヌクレアーゼ耐性を有するものとなる。各末端に少なくとも2つ、好ましくは各末端に3~4つ、のLNA修飾ヌクレオチドを含むアンチセンスRNAの例は、図3Aに示すセンス鎖塩基配列(配列番号28~35)の修飾RNAであり、非限定的に、例えば配列番号36~38、配列番号51~53のようないずれかの塩基配列からなる修飾RNAである。

【0049】
本発明の核酸はまた、siRNAの塩基配列中の一部にデオキシリボヌクレオチド配列を含むRNA/DNAキメラ構造を有することができる。デオキシリボヌクレオチド配列を含むことによってリボヌクレオチド配列のみと比べてよりヌクレアーゼ耐性とすることが可能になる(例えば特許3803318号公報)。デオキシリボヌクレオチドは、siRNAの塩基配列のアンチセンス鎖又はセンス鎖の全ヌクレオチド数あたり30%以下、好ましくは20%以下の割合で含むことができる。デオキシリボヌクレオチドは、siRNAのアンチセンス鎖及びセンス鎖の両方に含まれていてもよいし、或いはセンス鎖のみに含まれていてもよい。また、siRNAの塩基配列中のデオキシリボヌクレオチドは3'側に存在することが好ましく、例えば3'末端に突出末端として2~4つのデオキシリボヌクレオチドが連続する配列で存在してもよい。具体的には、RNA/DNAキメラは、センス鎖の塩基配列が配列番号20~27の塩基配列であり、かつ、アンチセンス鎖の塩基配列がそれぞれ配列番号28~35の塩基配列である二本鎖RNAである。

【0050】
上記環状構造(すなわち、二本鎖のステムと2つのループとからなる構造)を有する核酸は、いわゆるダンベル型の一本鎖RNAである。ステムは、siRNAのセンス鎖配列とアンチセンス鎖配列の互いに相補的な配列から構成される。ループは、ステムの各末端部に連結された例えば1ループあたり非相補的な約2~約15ヌクレオチドから構成される(例えば米国特許第5,168,053号明細書、米国特許第5,190,931号明細書、米国特許第5,135,917号明細書、Smith and Clusel et al.(1993)Nucl.Acids Res.21:3405-3411、及び米国特許第5,087,617号明細書)。

【0051】
上記核酸の他の例として、上記のアンチセンスRNA(若しくはアンチセンスDNA)、又はその修飾核酸などを挙げることができる。

【0052】
アンチセンスRNA(若しくはアンチセンスDNA)は、TUG1遺伝子の転写産物であるlncRNAを標的とする一本鎖核酸である。該lncRNAを標的とする上記siRNAはlncRNAを分解するのに対し、アンチセンスRNA(若しくはアンチセンスDNA)は上記のlncRNA機能を抑制若しくは阻害する。生体内での安定性を高めるために、アンチセンスRNA若しくはアンチセンスDNAは、RNA/DNAキメラ構造、及び/又は、1若しくは複数の上記の修飾ヌクレオチドを含む修飾誘導体が好ましい。修飾ヌクレオチドの具体例は上に記載したものであり、さらに好ましい例は、ホスホロチオエート修飾と、2’-MOEヌクレオチド、2’-OMeヌクレオチド又はLNA修飾ヌクレオチドとの組み合わせである。アンチセンスRNA(若しくはアンチセンスDNA)又はその修飾誘導体の塩基長は、通常12~100ヌクレオチド、好ましくは15~50ヌクレオチド、より好ましくは、20~30ヌクレオチドである。塩基長として100ヌクレオチドを超える長さとすることも可能であるが、特に製造コストの面で不利となるので、上記の範囲が適当である。アンチセンスRNA若しくはアンチセンスDNAの配列は、TUG1遺伝子の転写体lncRNA又はそれをコードするDNAの塩基配列、例えば配列番号1、2又は3のヒトTUG1由来の配列、或いは、これらの各塩基配列と70%以上、80%以上又は90%以上、好ましくは95%以上、さらに好ましくは98%以上もしくは99%以上の配列同一性を有する塩基配列からなる天然バリアントであるTUG1の塩基配列から、上記サイズの連続する塩基配列を選択し、この配列に相補的な塩基配列又はその修飾塩基配列とすることができる。標的として、上記のとおり、ヒトTUG1遺伝子の転写体RNAの塩基配列である例えば配列番号1、2又は3の塩基配列において、それぞれ、ヌクレオチド番号1044~1062、1044~1062、又は1044~1062(図2における#1の領域)、並びに/或いは、ヌクレオチド番号2997~5181、2941~5111、又は2941~5125(図2における#5-#4までの領域)の領域を標的とすることが好ましい。具体的には、各末端に少なくとも2つ、好ましくは3~4つ、のLNA修飾ヌクレオチドを含むアンチセンスRNAの例は、図3Aに示すアンチセンス鎖塩基配列(配列番号28~35)を有するアンチセンスRNAであり、非限定的に、例えば配列番号36~38、51~53のようないずれかの塩基配列を有するものである。さらに、この具体例において、アンチセンスDNAは、上記アンチセンスRNAの配列においてウラシル(U)をチミン(T)に変換した塩基配列を有するものである。

【0053】
2.腫瘍の治療又は予防用組成物
本発明の組成物は、腫瘍幹細胞において上記のTUG1遺伝子の高発現を抑制する、それによって腫瘍の増殖を抑制する核酸を有効成分として含むことを特徴とする。本発明の組成物は腫瘍幹細胞を標的とするため、腫瘍は退縮するし、並びに、腫瘍の転移も抑制される。

【0054】
上記核酸は、それ自体を担体等とともに混合して含む組成物の形態に製剤化されてもよいし、或いは、該核酸をデリバリーシステムに組み入れるように製剤化されてもよい。

【0055】
上記核酸の用量は、非限定的に、ヒトの場合、1回あたり、かつ成人1kg体重あたりsiRNA分子に換算して例えば約0.01mg~約1,000mgであるが、一般に用量又は投与量は、被験体の性別、年齢、体重、症状、重症度、副作用などを考慮して選択されるべきである。また、投与は、例えば1週間、2週間、3週間、又は4週間間隔、或いは、必要であれば1か月を超える間隔で行うことができる。

【0056】
製剤化において、核酸有効成分の他に、担体又は希釈剤、並びに添加剤を混合して医薬組成物の形態としうる。必要に応じて、該医薬組成物と、他の抗癌剤(例えば化学療法剤、抗体医薬、等)及び/又は他の治療関連薬剤とを組み合わせた、いわゆる医薬キットとすることもできる。

【0057】
担体又は希釈剤は、製剤の形態、すなわち通常、固体製剤、半固体製剤又は液体(若しくは、溶液)製剤、或いは剤型(若しくは、投与形態)、に応じて変化しうる。剤型として、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、ゲル剤等の経口投与製剤、又は、注射剤、点滴剤、経粘膜投与剤(例えば、経鼻投与剤等)、経皮投与剤、リポソーム剤、経直腸投与剤(若しくは坐剤)、吸入剤、軟膏剤、ローション剤等による非経口投与剤を挙げることができる。

【0058】
液体製剤用の希釈剤には、水性溶媒の場合には、例えば、蒸留水、滅菌水、リンゲル液、生理食塩水などが含まれる。必要に応じて、エタノールを適量混合することができる。リポソーム製剤、難水性製剤等の場合には、有機溶媒単独で又は有機溶媒/水混合液が担体又は賦形剤として使用されうる。有機溶媒の例には、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、アセトニトリル、アセトン、ケトン、ジメチルスルホキシド、ジメチルホルムアミド、グリセロール、ポリエチレングリコール、カカオ脂や大豆油などの油脂、並びにこれらの組み合わせが含まれる。

【0059】
固体製剤用の担体又は賦形剤の例は、マルトース、ラクトース、スクロース、デンプン、ゼラチン、トラガカントゴム、メチルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロースナトリウム、等を含む。

【0060】
添加剤には、製薬上許容されうる、例えば、賦形剤、増量剤、充填剤、増量剤、結合剤、湿潤剤、崩壊剤、潤滑剤、乳化剤、分散剤、緩衝剤、保存剤、溶解補助剤、防腐剤、矯味矯臭剤、無痛化剤、安定化剤、等張化剤、pH調整剤、等が挙げられる。

【0061】
投与経路は、例えば、静脈内投与、動脈内投与、経口投与、経肺投与、組織内投与、経皮投与、経粘膜投与、直腸内投与、腹腔内投与、脳内投与などを挙げることができる。それらの中で、特に静脈内投与、経皮投与、経粘膜投与が好ましい。

【0062】
本発明の組成物中の核酸を生体内のヌクレアーゼから保護するために、リポソーム内に該核酸を封入することができる。リポソームは、通常、カチオン性リポソームが使用される(Y.TAKAHASHI et al.,YAKUGAKU ZASSHI 127(10)1525—1531(2007))。カチオン性リポソームは陽性に荷電しており、陰性に荷電した細胞膜と静電気的に結合しやすく、受動的に細胞膜に結合したリポソーム複合体は、エンドサイトーシスを介して細胞質内に取り込まれ、エンドゾームから抜け出して細胞質内に放出されると考えられている。

【0063】
本発明はさらに、抗癌剤としての上記組成物を被験体に投与することを含む、TUG1遺伝子を正常組織と比べて高発現する腫瘍を有する被験体を治療するための方法を提供する。

【0064】
本発明によって治療しうる上記腫瘍は、例えば、脳腫瘍、乳癌、大腸癌、前立腺癌、肝臓癌、肺癌、白血病及びリンパ腫などであるが、これらの腫瘍に制限されない。

【0065】
例えば脳腫瘍の幹細胞での上記核酸の使用により優れた細胞増殖抑制効果が確認されたことから、本発明の核酸を有効成分とする組成物は、腫瘍幹細胞を標的とする抗癌剤としても優れたものであることが判明した。


【0066】
組成物、被験体、投与量、投与経路、投与回数などは、上で記載したとおりである。

【0067】
本発明の組成物は、化学療法剤、医薬抗体、免疫チェックポイント阻害剤などの他の癌治療剤の投与と組み合わせて被験体に投与することができる。該組成物の投与は、化学療法剤、医薬抗体、免疫チェックポイント阻害剤などの他の癌治療剤の投与の前に、同時に、又は後に行うことができる。

【0068】
化学療法剤の例は、非限定的に、特表2014-508515号公報に記載されるような抗癌剤、例えば、トポイソメラーゼ阻害剤(例えば、エトポシド、ランプトテシン、トポテカン、テニポシド、マイトキサントロン、等)、DNAアルキル化剤(例えば、シスプラチン、メクロレタミン、シクロホスファミド、イホスファミド、メルファラン、コランブシル、ブスルファン、チオテパ、カルムスチン、ロムスチン、カルボプラチン、ダカルバジン、プロカルバジン、等)、DNA鎖切断誘発剤(例えば、ブレオマイシ ン、ドキソルビシン、ダウノルビシン、イダルビシン、マイトマイシンC、等)、抗微小管剤(例えば、ビンクリスチン、ビンブラスチン、等)、抗代謝剤(例えば、シタラビン、メトトレキセート、ヒドロキシウレア、5-フルオロウラシル、フロックスウリジン、6-チオグアニン、6-メルカプトプリン、フルダラビン、ペントスタチン、クロロデオキシアデノシン、等)、アントラサイクリン、ビンカアルカロイド、エピポフィロトキシン、テモゾロマイドなどである。

【0069】
医薬抗体の例は、非限定的に、トラスツズマブ、ベバシツズマブを含む種々の市販抗体及び開発・上市される抗体である。

【0070】
免疫チェックポイント阻害剤は、癌細胞が免疫細胞からの攻撃を回避することを抑制することによって癌細胞に対する免疫細胞の本来の攻撃力を回復するための薬剤であり、例えばPD-1(programmed cell death-1)やPD-L1(programmed death-ligand 1)に対する抗体(例えばニボルマブ、atezolizumab、等)などを包含する。

【0071】
上記薬剤の投与量は、被験体の性別、年齢、体重、症状、重症度、副作用などを考慮して選択されるか、或いは、臨床現場で実際に使用される範囲の用量である。
【実施例】
【0072】
本発明を下記の実施例によってさらに具体的に説明するが、本発明の技術的範囲は、これらの実施例に限定されないものとする。
【実施例】
【0073】
〔実施例1〕
<各種腫瘍細胞株におけるTUG1の発現レベル>
種々の腫瘍細胞株におけるTUG1の発現レベルを定量的RT-PCRを用いて測定した。使用した腫瘍細胞株は、グリオーマ幹細胞株(GSC)、グリオーマ細胞株(T98,U251,SK-MG1及びAO2)、乳癌細胞株(MCF7,MDA231,SK-BR3及びT47D)、大腸癌細胞株(Lovo,Caco-2,RKO,SW48、SW480及びSW1083)、前立腺癌細胞株(PC3,LNCap及びVcap)、肝臓癌細胞株(HepG2,Huh7及びA549)、肺癌細胞株(H920及びPC9)、白血病細胞株(Jurkat)、バーキットリンパ腫細胞株(Raji)、並びに、リンパ腫細胞株(Pfeiffer)である。
【実施例】
【0074】
結果を、内部標準GAPDH(glyceraldehyde 3-phosphate dehydrogenase)に対するTUG1の相対発現比率で表し図1に示した。正常組織におけるTUG1の発現レベル(TUG1/GAPDH=0.05394(正常脳組織3症例の平均値))と比較すると、腫瘍細胞株におけるTUG1遺伝子の発現レベルは、多くの腫瘍細胞で高いことがわかる。
【実施例】
【0075】
〔実施例2〕
<siRNAによるTUG1の標的配列の位置と抑制効果>
TUG1発現を抑制する核酸(siRNA)を設計するために、TUG1 lncRNAの塩基配列(NR_110492(配列番号1)、NR_110493(配列番号2)及びNR_002323(配列番号3)の全体から標的配列領域の候補を選抜し(A.M.Khalil et al.,PNAS,106:11667-11672,2009)、siDirect version 2.0(http://sidirect2.rnai.jp/))、その領域に対するsiRNA(すなわち、si-TUG1#1~si-TUG1#14((注)これらの各配列には3'末端に2つのデオキシリボヌクレオチド配列が含まれている。))を北海道システムサイエンス社(札幌、日本)に依頼し作製した(図3)。
【実施例】
【0076】
各種siRNAをグリオーマ幹細胞株GSC(1.0×10細胞)へ終濃度30nMとなるようにLipofectamine3000(ライフテクノロジーズ社)を用いて添付プロトコールに従いそれぞれ導入した。コントロールsiRNA(「NC」)はSilencer Select Negative Control #1 siRNA(ライフテクノロジーズ社、カタログ番号4390843)を用いた。siRNA導入3日後にGAPDH遺伝子を内部標準とし、コントロールsiRNAに対するTUG1の発現量を定量的RT-PCR(アプライドバイオシステムズ社)にて定量した結果、8種類のsiRNA(si-TUG1#1~si-TUG1#8)に対して有意のTUG1発現抑制効果を確認した(図2及び図4)。一方、si-TUG1#9~si-TUG1#14については、十分なTUG1発現抑制効果が見られなかった。
【実施例】
【0077】
さらにまた、上記の結果に基づいて、TUG1標的領域として、配列番号1、2又は3の塩基配列において、それぞれ、ヌクレオチド番号1044~1062、1044~1062、又は1044~1062(図2における#1の領域)、並びに/或いは、2997~5181、2941~5111、又は2941~5125(図2における#5-#4までの領域)の領域を標的とすることが好ましいと認められた。
【実施例】
【0078】
〔実施例3〕
<GSC腫瘍増殖抑制>
実施例2で作製されTUG1発現抑制効果が認められた8種類のsiRNA(si-TUG1#1~si-TUG1#8)の各々を、実施例2に記載したとおりGSC腫瘍細胞内にリポフェクション法を用いて導入し、各siRNAの導入3日後にトリパンブルー染色(ライフテクノロジーズ社)を用いて生存細胞数を測定し、コントロールsiRNA(「NC」)に対する抗増殖効果を解析した結果、解析に用いた8種類のsiRNAについて有意な抗増殖効果が認められた(図5)。
【実施例】
【0079】
〔実施例4〕
<LNA修飾アンチセンスRNAによるGSC腫瘍増殖抑制>
実施例2及び実施例3でTUG1の発現を最も効果的に抑制したsi-TUG1#2のセンス鎖配列((注)TUG1のlncRNA配列部分と相補的な配列である。)に対してLNA(Locked Nucleic Acid;2'-O,4'-Cメチレンブリッジ(-O-CH-)核酸ヌクレオチド)修飾を行い3種類のLNA修飾アンチセンスRNA(LNA-TUG1-1#1(配列番号36)、LNA-TUG1-1#2(配列番号37)、LNA-TUG1-1#3(配列番号38);図6)をジーンデザイン社(大阪、日本)に依頼し作製し、TUG1発現抑制効果を調べた。コントロールsiRNA(「NC」)、si-TUG1#2、及び上記のLNA修飾アンチセンスの各々をグリオーマ幹細胞株GSCへリポフェクション法により導入し、導入後3、7、10日後にRNAを回収しTUG1発現量の変化を継時的に定量した。
【実施例】
【0080】
その結果、LNA修飾アンチセンスRNAを用いることにより、si-TUG1#2と比較しTUG1の発現抑制効果をより長期間保持できることが分かった(図7)。
【実施例】
【0081】
さらに各siRNA、各LNA修飾アンチセンスRNAの導入10日後におけるGSCの相対生存細胞数を測定した結果、LNA修飾アンチセンスRNAについてのみ有意な抗増殖効果が認められた(図8)。
【実施例】
【0082】
同様に、si-TUG1#6のアンチセンス鎖配列((注)TUG1のlncRNA配列部分と相補的な配列である。)に対してLNA修飾を行い3種類のLNA修飾アンチセンスRNA(LNA-TUG1-2#1(配列番号51)、LNA-TUG1-2#2(配列番号52)、LNA-TUG1-2#3(配列番号53);図9)をジーンデザイン社に依頼し作製し、TUG1発現抑制効果を調べた。コントロールsiRNA(「NC」)、si-TUG1#6、及び上記のLNA修飾アンチセンスの各々をグリオーマ幹細胞株GSCへリポフェクション法により導入し、導入後3、7、10日後にRNAを回収しTUG1発現量の変化を継時的に定量した。
【実施例】
【0083】
その結果、LNA修飾アンチセンスRNAを用いることにより、si-TUG1#6と比較しTUG1の発現抑制効果をより長期間保持できることが分かった(図10)。
【実施例】
【0084】
さらに各siRNA、各LNA修飾アンチセンスRNAの導入10日後におけるGSCの相対生存細胞数を測定した結果、LNA修飾アンチセンスRNAに対してより有意な抗増殖効果が認められ、とりわけLNA-TUG1-2#2(配列番号52)とLNA-TUG1-2#3(配列番号53)は優れた抗増殖効果が認められた(図11)。
【実施例】
【0085】
〔実施例5〕
<前立腺癌増殖抑制>
実施例2及び実施例3と同様の手順により前立腺癌細胞株PC3にsi-TUG1#2をリポフェクション法にて導入した。導入3日後の前立腺癌細胞株PC3におけるTUG1発現レベルとPC3株の相対細胞増殖率を上記実施例と同様に測定した。陰性対照としてコントロールsiRNA(「NC」)を使用し、また、発現レベルは、同様に、内部標準GAPDHに対するTUG1の相対発現比率で表した。
【実施例】
【0086】
その結果、TUG1阻害による前立腺癌細胞株PC3の増殖抑制効果が認められた(図12A及び図12B)。
【実施例】
【0087】
〔実施例6〕
<GSC腫瘍担持マウスにおける腫瘍増殖抑制>
グリオーマ幹細胞株GSCを皮下に移植したヌードマウスに、腫瘍サイズが約100mmとなった時点を0日目とし、この時点から3日毎にLNA-TUG1-1#1(配列番号36)を各腫瘍に対して5μgずつ直接投与し、35日目まで腫瘍サイズを測定した。対照としてコントロールsiRNA(「NC」)を同様にマウスに投与した。
【実施例】
【0088】
その結果、図13に示すように、LNA-TUG1-1#1によるGSC増殖抑制効果が認められた。
【産業上の利用可能性】
【0089】
本願では、特定の腫瘍細胞においてTUG1の発現を効果的に抑制する修飾siRNA及び修飾アンチセンスRNAを作製し、それらのなかにTUG1発現を抑制するとともにグリオーマ等の腫瘍及び/又は腫瘍幹細胞の細胞増殖を抑制する核酸が見いだされた。特にLNA修飾アンチセンスRNAを用いることによって、より長期的に腫瘍内のTUG1発現を抑制し、腫瘍及び/又は腫瘍幹細胞増殖の抑制を有意に可能とすることを確認した。本発明により、TUG1を標的とした核酸創薬がGBM治療に有効である可能性が示唆された。
【配列表フリ-テキスト】
【0090】
配列番号4~19:ヒトTUG1に対するsiRNA
配列番号20~21、28~29、43、49:ヒトTUG1に対するsiRNA、この配列中(1)・・(17)はRNAである。
配列番号22~27、30~35、39~42、44~48、50:ヒトTUG1に対するsiRNA、この配列中(1)・・(19)はRNAである。
配列番号36:LNA修飾アンチセンスRNA、この配列中(1)・・(4)及び(16)・・(19)はロックされた核酸である。
配列番号37:LNA修飾アンチセンスRNA、この配列中(1)・・(3)及び(17)・・(19)はロックされた核酸である。
(19)はロックされた核酸である。
配列番号38:LNA修飾アンチセンスRNA、この配列中(1)・・(4)及び(17)・・(19)はロックされた核酸である。
配列番号51:LNA修飾アンチセンスRNA、この配列中(1)・・(4)及び(18)・・(21)はロックされた核酸である。
配列番号52:LNA修飾アンチセンスRNA、この配列中(1)・・(3)及び(19)・・(21)はロックされた核酸である。
配列番号53:LNA修飾アンチセンスRNA、この配列中(1)・・(4)及び(19)・・(21)はロックされた核酸である。
【0091】
本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12