AP(BW , GH , GM , KE , LR , LS , MW , MZ , NA , RW , SD , SL , ST , SZ , TZ , UG , ZM , ZW) , EA(AM , AZ , BY , KG , KZ , RU , TJ , TM) , EP(AL , AT , BE , BG , CH , CY , CZ , DE , DK , EE , ES , FI , FR , GB , GR , HR , HU , IE , IS , IT , LT , LU , LV , MC , MK , MT , NL , NO , PL , PT , RO , RS , SE , SI , SK , SM , TR) , OA(BF , BJ , CF , CG , CI , CM , GA , GN , GQ , GW , KM , ML , MR , NE , SN , TD , TG) , AE , AG , AL , AM , AO , AT , AU , AZ , BA , BB , BG , BH , BN , BR , BW , BY , BZ , CA , CH , CL , CN , CO , CR , CU , CZ , DE , DK , DM , DO , DZ , EC , EE , EG , ES , FI , GB , GD , GE , GH , GM , GT , HN , HR , HU , ID , IL , IN , IR , IS , JP , KE , KG , KN , KP , KR , KZ , LA , LC , LK , LR , LS , LU , LY , MA , MD , ME , MG , MK , MN , MW , MX , MY , MZ , NA , NG , NI , NO , NZ , OM , PA , PE , PG , PH , PL , PT , QA , RO , RS , RU , RW , SA , SC , SD , SE , SG , SK , SL , SM , ST , SV , SY , TH , TJ , TM , TN , TR , TT , TZ , UA , UG , US
【0014】 3.骨髄間葉系幹細胞(BM-MSC)の分化培養 BM-MSCは、添付書類の指示に従って、大腿骨から調製した(StemCell Technologies Inc.)。BALB/cまたはCD90.1+ BALB/cから得た10本の大腿骨の両端部分を切断し、乳鉢中に5mlの1%BSA含有PBSと共に移した。大腿骨を乳鉢で弱い力で5分間擦って粉砕し、このとき認められた赤い脊髄細胞は捨て去った。粉砕した大腿骨から赤い脊髄細胞を1%BSA含有PBSを新しいものと交換しながら5回取り去った後、粉々になった白い大腿骨を集め、0.2%コラゲナーゼ・タイプI(Sigma)含有PBSと共にインキュベートした。水浴中で37℃にて40分間激しく振盪した後、MSCを含む上清を70μmフィルターに通過させた。3回洗浄後に、培養プレートの壁面に接着したMSCをマウス20%MSC刺激物質含有MesenCult MSC基礎培地(StemCell Technologie Inc.)中で30日間培養した。培養中は、3日毎に半量の培地を交換した。得られたMSCが脂肪細胞及び骨細胞に分化する能力を確認するために、20%脂肪細胞形成及び骨細胞形成刺激物質を含有するMesenCult MSC基礎培地を用いて、70%コンフルエントMSCを2週間培養した後、脂肪細胞についてはOil Red O(Sigma-Aldrich)を、骨細胞についてはAlizarin Red S(和光ピュアケミカル)とヘマトキシリン(武藤ピュアケミカル)をそれぞれ用いて染色した。MSC刺激物質含有培地で得られた初期MSCコロニーをギムザ(和光ピュアケミカル)染色した。培養されたBM-MSCの純度は、PEを結合した抗CD140aモノクローナル抗体及びFITC結合抗Sca-1モノクローナル抗体で染色したMSCをフローサイトメトリー分析(FACScant II. BD)にて確認した。培養されたMSCは、更にCD29, CD90.1及びCD105の存在と、CD14, CD34及びCD45の非存在とに関し、各分子に対するモノクローナル抗体を用いたフローサイトメトリー分析によって評価した。
【0015】 4.MB-MSCキメラマウスの調製 BALB/cマウス(CD90.2)の大腿骨をPBSで洗浄し、骨髄細胞を調製した。培養後BM-MSC移植する前に、BALB/cマウスに6-Gyの放射線を照射した。CD90.1+ BALB/cマウスから得た培養MSC(1 x 106/マウス)をBALB/cの大腿骨から得た骨髄細胞(5 x 106 個/マウス)と混合し、放射線を照射したBALB/cマウスに静脈内投与した。得られたキメラマウスは、1mg/mlネオマイシン(Calbiochem社)含有オートクレーブ水と、X線照射餌とを用いて2週間維持した。MSC移植から60日後に、CD90.1+ BM-MSCキメラBALB/ cマウスを腫瘍MSCの確認に用いた。
【0016】 5.インビボにおけるCD8+T細胞及びCD8+T細胞放出ECVの処理 腫瘍浸潤CD8+T細胞放出ECVと腫瘍間質構造の変化との関係を調べるために、皮下にCMS5a腫瘍細胞を投与して10日後(腫瘍直径が約10mm)のCMS5a担癌BALB/cマウスまたはBALB/cヌードマウスに培養後7日目のCD90.1 DUC18 CD8+ T 細胞(1 x 107 個/マウス)単独またはGW4869(ECV放出阻害剤)処理したCD90.1 DUC18 CD8+ T 細胞(1 x 107 個/マウス)を静脈内投与した。このとき同時に、抗マウス・グルココルチコイド誘導TNFレセプター関連タンパク質(GITR)モノクローナル抗体(DTA-1)(2μg/腫瘍)を腫瘍内投与(inter tumor: i.t.)した。DTA-1は、非特許文献18に示すように、腫瘍部位へのCD8+T細胞の集積を高めるために使用した。GW4869は、培養終了の24時間前から20μg/ml添加した。培養したCD90.1 DUC18 CD8+ T細胞の投与後1,2,3,5及び7日後にCMS5a腫瘍組織を回収し、免疫組織染色した。
【非特許文献1】Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S, Okano H, Matsuzaki Y. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α. Nat. Protoc. (2012) 7: 2103-2111. 【非特許文献2】Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B, Vestweber D, Hatzopoulos AK. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J. Exp. Med. (2003) 197: 1755-1765. 【非特許文献3】Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. (2009) 9: 239-252. 【非特許文献4】Tran E, Chinnasamy D, Yu Z, Morgan RA, Lee CC, Restifo NP, Rosenberg SA. Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia. J Exp Med. (2013) 210: 1125-1135. 【非特許文献5】Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. (2011) 27:347-376. 【非特許文献6】Koh BI, Kang Y. The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells. EMBO reports. (2012) 13: 412-422. 【非特許文献7】Nieto MA1, Cano A. The epithelial-mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin. Cancer Biol. (2012) 22: 361-368. 【非特許文献8】Filipazzia P, Burdeka M, Villab A, Rivoltinia L, Huber V. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin. Cancer Biol. (2012) 22: 342-349. 【非特許文献9】Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi RU, Yoshida M, Tsuda H, Tamura K, Ochiya T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal. (2014) 7: ra63. 【非特許文献10】Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T, Azzam DJ, Twyman-Saint Victor C, Wiemann BZ, Ishwaran H, Ter Brugge PJ, Jonkers J, Slingerland J, Minn AJ. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. (2014) 159: 499-513. 【非特許文献11】Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. (2010) 70: 9621-9630. 【非特許文献12】Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, De Thonel A, Multhoff G, Hamman A, Martin F, Chauffert B, Solary E, Zitvogel L, Garrido C, Ryffel B, Borg C, Apetoh L, Rebe C, Ghiringhelli F. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. (2010) 120: 457-471. 【非特許文献13】Pucci F, Pittet MJ. Molecular pathways: tumor-derived microvesicles and their interactions with immune cells in vivo. Clin. Cancer Res. (2013) 19: 2598-2604. 【非特許文献14】Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M, Azab F, Flores LM, Campigotto F, Weller E, Anderson KC, Scadden DT, Ghobrial IM. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. (2013) 123: 1542-1555. 【非特許文献15】Shimoda M, Principe S, Jackson HW, Luga V, Fang H, Molyneux SD, Shao YW, Aiken A, Waterhouse PD, Karamboulas C, Hess FM, Ohtsuka T, Okada Y, Ailles L, Ludwig A, Wrana JL, Kislinger T, Khokha R. Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nat. Cell Biol. (2014) 16: 889-901. 【非特許文献16】Hinrichs CS1, Gattinoni L, Restifo NP. Programming CD8+ T cells for effective immunotherapy. Curr. Opin. Immunol. (2006) 18: 363-370. 【非特許文献17】Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J. Leukoc. Biol. (2013) 94: 41-53. 【非特許文献18】Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, Ikeda H, Shiku H. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS One. (2014) 9: e104669. 【非特許文献19】Prakash MD, Munoz MA, Jain R, Tong PL, Koskinen A, Regner M, Kleifeld O, Ho B, Olson M, Turner SJ, Mrass P, Weninger W, Bird PI. Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity. (2014) 41: 960-972. 【非特許文献20】Ikeda, H., N. Ohta, K. Furukawa, H. Miyazaki, L. Wang, K. Kuribayashi, L.J. Old, and H. Shiku. 1997. Mutated mitogen-activated protein kinase: a tumor rejection antigen of mouse sarcoma. Proc. Natl. Acad. Sci. USA. 94:6375-6379. 【非特許文献21】Ly LV, Sluijter M, van der Burg SH, Jager MJ, van Hall T. Effective cooperation of monoclonal antibody and peptide vaccine for the treatment of mouse melanoma. J Immunol. (2013) 190: 489-496. 【非特許文献22】Griffin MD1, Ritter T, Mahon BP. Immunological aspects of allogeneic mesenchymal stem cell therapies. Hum Gene Ther. 2010 Dec;21(12):1641-55. 【非特許文献23】Bexell D, Gunnarsson S, Tormin A, Darabi A, Gisselsson D, Roybon L, Scheding S, Bengzon J. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther. (2009) 17: 183-190. 【非特許文献24】Eikawa S, Mizukami S, Udono H. Monitoring multifunctionality of immune-exhausted CD8 T cells in cancer patients. Methods Mol Biol. (2014) 1142: 11-17. 【非特許文献25】Shimada M, Yoshizaki S, Ichino M, Klinman DM, Okuda K. Apoptosis of antigen-specific CTLs contributes to low immune response in gut-associated lymphoid tissue post vaccination. Vaccine. (2014) 32: 5198-5205. 【非特許文献26】Arina A, Schreiber K, Binder DC, Karrison TG, Liu RB, Schreiber H. Adoptively transferred immune T cells eradicate established tumors despite cancer-induced immune suppression. J Immunol. (2014) 192: 1286-1293. 【非特許文献27】Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y. Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res. (2008) 68: 8066-8075. 【非特許文献28】Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO, von Deimling A, Wick W, Platten M. Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol. (2013) 265: 106-116. 【非特許文献29】Mi Z, Bhattacharya SD, Kim VM, Guo H, Talbot LJ, Kuo PC. Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis. (2011) 32: 477-487. 【非特許文献30】McDonald DM, Baluk P. Significance of Blood Vessel Leakiness in Cancer Cancer Res. (2002) 62: 5381-5385. 【非特許文献31】Yoong KF, McNab G, Hubscher SG, Adams DH. Vascular adhesion protein-1 and ICAM-1 support the adhesion of tumor-infiltrating lymphocytes to tumor endothelium in human hepatocellular carcinoma. J Immunol. (1998) 160: 3978-3988. 【非特許文献32】Nandi A1, Estess P, Siegelman M. Bimolecular complex between rolling and firm adhesion receptors required for cell arrest; CD44 association with VLA-4 in T cell extravasation. Immunity. (2004) 20: 455-465. 【非特許文献33】Ding Z, Xiong K, Issekutz TB. Chemokines stimulate human T lymphocyte transendothelial migration to utilize VLA-4 in addition to LFA-1. J Leukoc Biol. (2001) 69: 458-466. 【非特許文献34】Stauss HJ, Morris EC. Immunotherapy with gene-modified T cells: limiting side effects provides new challenges. Gene Ther. (2013) 20: 1029-1032. 【非特許文献35】Winograd R, Byrne K, Evans RA, Odorizzi PM, Meyer AR, Bajor DL, Clendenin C, Stanger BZ, Further EF, Wherry EJ, Vonderheide RH. Induction of T cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res. (2015) Feb 12. pii: canimm.0215.2014.