TOP > 国内特許検索 > 相変化材料および相変化型メモリ素子 > 明細書

明細書 :相変化材料および相変化型メモリ素子

発行国 日本国特許庁(JP)
公報種別 再公表特許(A1)
発行日 平成30年10月4日(2018.10.4)
発明の名称または考案の名称 相変化材料および相変化型メモリ素子
国際特許分類 H01L  21/8239      (2006.01)
H01L  27/105       (2006.01)
H01L  45/00        (2006.01)
FI H01L 27/105 449
H01L 45/00 A
国際予備審査の請求 未請求
全頁数 18
出願番号 特願2017-556030 (P2017-556030)
国際出願番号 PCT/JP2016/086786
国際公開番号 WO2017/104577
国際出願日 平成28年12月9日(2016.12.9)
国際公開日 平成29年6月22日(2017.6.22)
優先権出願番号 2015246075
優先日 平成27年12月17日(2015.12.17)
優先権主張国 日本国(JP)
指定国 AP(BW , GH , GM , KE , LR , LS , MW , MZ , NA , RW , SD , SL , ST , SZ , TZ , UG , ZM , ZW) , EA(AM , AZ , BY , KG , KZ , RU , TJ , TM) , EP(AL , AT , BE , BG , CH , CY , CZ , DE , DK , EE , ES , FI , FR , GB , GR , HR , HU , IE , IS , IT , LT , LU , LV , MC , MK , MT , NL , NO , PL , PT , RO , RS , SE , SI , SK , SM , TR) , OA(BF , BJ , CF , CG , CI , CM , GA , GN , GQ , GW , KM , ML , MR , NE , SN , TD , TG) , AE , AG , AL , AM , AO , AT , AU , AZ , BA , BB , BG , BH , BN , BR , BW , BY , BZ , CA , CH , CL , CN , CO , CR , CU , CZ , DE , DJ , DK , DM , DO , DZ , EC , EE , EG , ES , FI , GB , GD , GE , GH , GM , GT , HN , HR , HU , ID , IL , IN , IR , IS , JP , KE , KG , KH , KN , KP , KR , KW , KZ , LA , LC , LK , LR , LS , LU , LY , MA , MD , ME , MG , MK , MN , MW , MX , MY , MZ , NA , NG , NI , NO , NZ , OM , PA , PE , PG , PH , PL , PT , QA , RO , RS , RU , RW , SA , SC , SD , SE , SG , SK , SL , SM , ST , SV , SY , TH , TJ , TM , TN , TR , TT , TZ
発明者または考案者 【氏名】須藤 祐司
【氏名】畑山 祥吾
【氏名】進藤 怜史
【氏名】小池 淳一
【氏名】齊藤 雄太
出願人 【識別番号】504157024
【氏名又は名称】国立大学法人東北大学
個別代理人の代理人 【識別番号】100099759、【弁理士】、【氏名又は名称】青木 篤
【識別番号】100123582、【弁理士】、【氏名又は名称】三橋 真二
【識別番号】100114018、【弁理士】、【氏名又は名称】南山 知広
【識別番号】100119987、【弁理士】、【氏名又は名称】伊坪 公一
【識別番号】100160716、【弁理士】、【氏名又は名称】遠藤 力
審査請求
テーマコード 5F083
Fターム 5F083FZ10
5F083GA05
5F083JA36
5F083JA37
5F083JA39
5F083JA40
5F083JA60
5F083PR22
要約 実用性に優れた相変化型メモリ素子を得るために適した新規組成を有する相変化材料、およびそれを用いた相変化型メモリ素子を得るために、相変化材料は、Cr、Ge及びTeを主成分とし、結晶相における抵抗値がアモルファス相における抵抗値よりも大きい性質を有する。相変化型メモリ素子は、基板と、この基板の上部にCr、Ge及びTeを主成分とし、結晶相における抵抗値がアモルファス相における抵抗値よりも大きい相変化材料で形成したメモリ層と、このメモリ層に通電するための第1、第2の電極層とを備える。
特許請求の範囲 【請求項1】
Cr、Ge及びTeを主成分とし、結晶相における抵抗値がアモルファス相における抵抗値よりも大きい、相変化材料。
【請求項2】
請求項1に記載の相変化材料であって、Crを全体の15(at.%)以上含む、相変化材料。
【請求項3】
請求項1又は2に記載の相変化材料であって、アモルファス相から結晶相に転移する結晶化温度が270℃以上である、相変化材料。
【請求項4】
請求項1乃至3の何れか1項に記載の相変化材料であって、N、O、Al、Si、CuおよびSbからなる群から選択した少なくとも1種類の元素を追加元素Mとして全体の0.01-5.0(at.%)含む、相変化材料。
【請求項5】
請求項1乃至4の何れか1項に記載の相変化材料であって、前記Cr、Ge、Te間には、一般化学式、
CrGeTe100-x-y
で示される関係が存在し、xは15.0-25.0(at.%)、yは15.0-25.0(at.%)の範囲内で、34.0(at.%)≦x+y≦48.0(at.%)となるように選択されている、相変化材料。
【請求項6】
請求項4に記載の相変化材料であって、前記追加元素Mを、
(CrGeTe100-x-y100-z
の形で含み、ここでzは、0.01-5.0(at.%)となるように選択されている、相変化材料。
【請求項7】
基板と、前記基板の上部に請求項1乃至6の何れか1項に記載の相変化材料で形成したメモリ層と、前記メモリ層に通電するための第1、第2の電極層と、を備える、相変化型メモリ素子。
発明の詳細な説明 【技術分野】
【0001】
本発明は、一般に、メモリ素子材料に適した相変化材料及びその材料を用いた相変化型メモリ素子に関し、特に、相変化に要する駆動エネルギーを低減することが可能な相変化材料、およびその材料を用いた相変化型メモリ素子に関する。
【背景技術】
【0002】
近年、電子機器の急速な市場拡大に伴い、既存不揮発性Flashメモリの性能向上が要求されており、Flashメモリの性能を大きく上回る次世代型の不揮発性メモリの開発が盛んに行われている。次世代不揮発性メモリとして、磁気抵抗メモリ(MRAM:agnetoresistive andom ccess emory)、強誘電体メモリ(FeRAM:Ferroelectric andom ccess emory)、相変化型メモリ(PCRAM:hase hange andom ccess emory)、抵抗変化型メモリ(ReRAM:Resistive andom ccess emory)などが盛んに研究開発されている。中でも、PCRAMは、単純なメモリセル構造を有するため、製造コストの他、集積度の面においても他のメモリに比し優れている。
【0003】
PCRAMの情報記録層には相変化材料が用いられており、相変化材料のアモルファス相と結晶相間の相変化に伴う電気抵抗変化を利用して、情報を記録する。
【0004】
アモルファス相状態の相変化材料は、結晶化温度Tc以上へ加熱することにより結晶相状態へと変化し、また、結晶相状態の相変化材料は、結晶化温度Tcよりも高い融点Tm以上へ加熱後、急冷することによりアモルファス相状態へ変化する。
【0005】
相変化材料のアモルファス相と結晶相間の相変化には、電気パルスによるジュール熱を利用し、例えば、融点Tm以上にジュール加熱してその後急冷しアモルファス相とすることによりリセット状態[0]とし、結晶化温度Tc以上かつ融点Tm未満にジュール加熱して結晶相とすることによりセット状態[1]として情報を記録する。
【0006】
現在、PCRAM用相変化材料としては、DVD-RAMに用いられているGeSbTe(GST)が広く検討されている(例えば非特許文献1、2参照)。
【0007】
一方で、更なるPCRAMの微細化による大容量化と共に、作動保障温度の向上(高温データ保持性の改善)やデータ書換えに伴う消費電力の低減が求められている。
【0008】
特許文献1では、GeSbTe化合物を相変化材料として用いた不揮発性メモリが開示されている。しかしながら、非特許文献1に示されているように、GeSbTe化合物のアモルファス相の結晶化温度Tcは約150℃程度と低い。それ故、アモルファス相の熱的安定性が低く、高温データ保持性が脆弱であり得るため、作動保障温度が十分でない。
【0009】
高結晶化温度を有する相変化材料として、特許文献2にはSbとTeを主成分とし、追加元素として少なくとも1種類の元素を追加した相変化材料が開示されており、追加元素として、B、C、N、Ag、In、PおよびGeが記述されている。すなわち特許文献2には、SbとTeを主成分とし、追加元素として少なくとも1種の元素を追加した相変化材料において、160℃以上の結晶化温度および2.5eV以上の結晶化の活性化エネルギーが得られることが開示されている。特許文献2の実施例には、Sb75Te25合金に追加元素としてN、Ge、B、PおよびAgを含有した相変化材料が記述されている。しかしながら、特許文献2に記載の相変化材料は、光記録媒体用の相変化記録材料として開発されたものであり、アモルファス相と結晶相との電気抵抗に関する記述については一切ない。
【0010】
また、上述したGeSbTe化合物をはじめとする既存の相変化材料は、結晶相の方がアモルファス相よりも電気抵抗が低い(通常、相変化材料では、結晶相はアモルファス相に比べて3桁以上電気抵抗が低い)。一般的に知られているように、ジュール発熱量Qは、Q=IRtで表される。ここで、Iは電流、Rは電気抵抗、tは時間である。従って、PCRAMメモリ素子を考えた場合、アモルファス相は高い電気抵抗を有するため、ジュール加熱により結晶化温度Tc以上へ加熱し結晶相へ相変化させる際の駆動電流は小さくて済む。それ故、アモルファス相状態から結晶相状態への書換え消費電力は小さい。一方で、結晶相をアモルファス相へ相変化させるためには結晶化温度Tcよりも高い温度である融点Tm以上に加熱しなければならず、また、結晶相は低い電気抵抗を有するため、融点Tm以上に加熱するために大きな駆動電流が必要であり消費電力が高くなってしまう欠点がある。
【0011】
特許文献3では、高温データ保持性およびデータ書換え消費電力を低減する相変化材料として、GeTe100-x-y(ここで式中、Mは、Al、Si、Cu、In及びSnからなる群から選択した1種類の元素を示し、xは5.0-50.0(at.%)、yは4.0-45.0(at.%)の範囲内で、40(at.%)≦x+y≦60(at.%)となるように選択されている)相変化材料およびそれを用いた相変化メモリ素子が開示されている。GeTe100-x-y相変化材料は、従来材よりも高い結晶化温度(Tc≧190℃)を有するため高温データ保持性に優れる。また、組成によっては510℃程度の低い融点Tmを持つため、相変化材料をアモルファス化するために過度の加熱が必要でなく、GeSbTe化合物(Tm≒620℃)といった従来相変化材料に比してデータ書換え消費電力の低減が可能である。しかしながら、GeSbTe化合物と同様に、結晶相の電気抵抗はアモルファス相のそれよりも3桁以上低く、依然として結晶相状態からアモルファス状態へ相変化させるために大きな駆動電流が必要であり、データ書換え消費電力の低減は十分であるとは言えない。
【0012】
以上のように、既に提案されている相変化材料には、PCRAMメモリ素子の材料として要求される、1)高温データ保持能力が高いこと、さらに、2)データ書換え時の消費電力が小さいこと、を満足する、十分に実用化に耐えうる材料は存在しない。
【先行技術文献】
【0013】

【特許文献1】特許第3896576号公報
【特許文献2】特開2000-343830号公報
【特許文献3】特許第5403565号公報
【0014】

【非特許文献1】N.Yamada et al.J.「Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory」Appl.Phys.69(5)(1991)p2849
【非特許文献2】寺尾元康、「相変化メモリ-(PRAM)」応用物理第75巻第9号(2006)p1098
【発明の概要】
【発明が解決しようとする課題】
【0015】
本発明は、上述した従来型の相変化材料の問題点を改善する目的でなされたものであり、実用性に優れた相変化型メモリ素子を得るために適した新規組成を有する相変化材料、およびそれを用いた相変化型メモリ素子を提供することを課題とする。
【課題を解決するための手段】
【0016】
PCRAMの高温データ保持性能の観点からは、相変化材料のアモルファス相の結晶化温度Tcが十分に高い必要がある。また、PCRAMのデータ書換え消費電力の観点からは、特に、融点Tm以上への加熱が必要となる「結晶相からアモルファス相への相変化」にかかる駆動エネルギー(駆動電流)を低減する事が重要である。先に示したQ=IRtの関係より、同じジュール発熱量Qを得ようとした場合、電気抵抗Rが高い方が少ない電流Iで済む。即ち、相変化型メモリ素子において、結晶相からアモルファス相への相変化にかかる駆動エネルギーを低減するためには、相変化材料の結晶相の電気抵抗が十分に高い必要がある。
【0017】
しかしながら、上述したように、現在開発されている一般的な相変化材料では、アモルファス相の抵抗値が結晶相の抵抗値よりも大きく、また、データの読み取り精度を上げるためには、アモルファス相と結晶相間の電気抵抗比が10以上必要であるとも言われている。その結果、現在の相変化材料では、一般に結晶相の抵抗値が小さく、これが、PCRAMのデータ書換え消費電力の削減要求に対して大きなネックとなっている。
【0018】
ところが、本発明者らが研究を進めた結果、結晶相の抵抗値がアモルファス相の抵抗値よりも大きい相変化材料があることを見出した。この、一般の相変化材料とは相間の抵抗値の大小関係が逆転している材料を利用することによって、PCRAMのデータ書換え消費電力の大幅な削減が可能となる。さらに本発明者らは、相変化材料それ自体で測定したアモルファス相と結晶相間の電気抵抗比がそれ程大きくなくても、該材料を用いて相変化型メモリ素子を形成した場合、アモルファス相と結晶相間の電気抵抗比が2桁、即ち10以上となり得ることを見出した。このことは、この相変化型メモリ素子がデータ読み取りに対して十分な信頼性を有しうることを示している。
【0019】
上記の知見に基づいて鋭意研究の結果、本発明者らは、Cr、GeおよびTeを主成分とする材料においてアモルファス相が得られ、高い結晶化温度を有すると共に、結晶相の方がアモルファス相よりも高い電気抵抗を有することを見出した。
【0020】
従って、本発明の第一態様では、Cr、Ge及びTeを主成分とし、結晶相における抵抗値がアモルファス相における抵抗値よりも大きい、相変化材料を提供する。
【0021】
上記第一態様において、Crを全体の15(at.%)以上含むようにしても良い。また、第一態様の相変化材料は、アモルファス相から結晶相に転移する結晶化温度が270℃以上であっても良い。さらに、N、O、Al、Si、CuおよびSbからなる群から選択した少なくとも1種類の元素を追加元素Mとして全体の0.01-5.0(at.%)含んでいても良い。
【0022】
上記第一態様に係る相変化材料は、前記Cr、Ge、Te間には、一般化学式、
CrGeTe100-x-y
で示される関係が存在し、xは15.0-25.0(at.%)、yは15.0-25.0(at.%)の範囲内で、34.0(at.%)≦x+y≦48.0(at.%)となるように選択されていても良い。また、前記追加元素Mを、
(CrGeTe100-x-y100-z
の形で含み、ここでzは、0.01-5.0(at.%)となるように選択されていても良い。
【0023】
本発明の第二の態様では、基板と、前記基板上に第一の態様に係る相変化材料で形成されたメモリ層と、前記メモリ層に通電するための第1、第2の電極層を備える、相変化型メモリ素子が提供される。
【発明の効果】
【0024】
本発明に係る相変化材料では、結晶化温度が270℃以上と高い。従って、この材料のアモルファス相の熱的安定性は極めて高い。また、これらの材料では、結晶相の電気抵抗の方がアモルファス相の電気抵抗よりも高い。それ故、ジュール熱により結晶相からアモルファス相へ相変化させる際の消費電力が小さい。その結果、この材料を用いて実用性の高い相変化型メモリ素子を構成する事が可能となる。
【図面の簡単な説明】
【0025】
【図1】本発明の種々の実施形態に係る相変化材料の組成とその物理特性を表にして示す図であり、Tcは結晶化温度、Ramoはアモルファス相の電気抵抗、Rcryは結晶相の電気抵抗、ΔRは、結晶相の電気抵抗をアモルファス相の電気抵抗で除した値を示す。
【図2】本発明の種々の実施形態に係る相変化材料薄膜の電気抵抗の温度依存性を示すグラフである。
【図3】図1に示す実施例10において得られたキッシンジャープロットを示すグラフである。
【図4】図3のグラフから求めた故障時間tと温度との関係を示すグラフである。
【図5】実施例10の組成を有する材料に追加元素を添加した時の結晶化温度を表にして示す図である。
【図6】図1に示す実施例10について得られた、W電極/相変化材料間のコンタクト比抵抗に及ぼす熱処理温度の影響を示すグラフである。
【図7】本発明の一実施形態に係る相変化型メモリ素子の概略断面図である。
【図8】実施例10を用いて作製した図7に示すメモリ素子のメモリ動作を示すグラフである。
【図9】実施例10の試料の温度260℃及び290℃におけるTEM写真を示す。
【図10】実施例10の試料の温度350℃及び380℃におけるTEM写真を示す。
【発明を実施するための形態】
【0026】
本発明者らは、高い結晶化温度が得られ、結晶相が高い電気抵抗を有する材料を追求すべく、種々の実験を行った結果、以下に示す特徴を有する材料において、本発明の目的を達成することができることを見出した。本発明者らが行った実験結果の一部を、後段で説明する図1に示している。なお、以下に示す実施形態では、相変化材料の結晶化温度Tcが270℃以上でかつ結晶相の電気抵抗がアモルファス相よりも高い材料を、本発明の目的を達成する相変化材料であるとした。

【0027】
この相変化材料は、図1に示すように、Cr、Ge、Teを主成分とし、結晶相の抵抗値がアモルファス相の抵抗値より高く、及び/または結晶化温度Tcが270℃より高い材料である。また、一般化学式、
CrGeTe100-x-y
で示される組成を有し、xは15.0-25.0(at.%)、yは15.0-25.0(at.%)の範囲内で、34.0(at.%)≦x+y≦48.0(at.%)となるように選択されていても良い。

【0028】
Crを15.0(at.%)-25.0(at.%)とする理由は、15.0(at.%)未満では、結晶相の電気抵抗が低く、十分な消費電力低減効果が得られなくなり、25.0(at.%)を超えると、結晶化温度が低くなり、アモルファス相の熱的安定性が得られなくなるからである。Geを15.0(at.%)-25.0(at.%)とする理由は、15.0(at.%)未満では、アモルファス相の方が結晶相よりも高い電気抵抗比を有し、25.0(at.%)を超えると、結晶化温度が低くなり、また、アモルファス相の電気抵抗が結晶相に比して非常に大きくなってしまうからである。また、CrとGeの合計が34.0(at.%)-48.0(at.%)とする理由は、34.0(at.%)未満では、結晶相の電気抵抗が低く、十分な消費電力低減効果が得られなくなり、また、48.0(at.%)を超えると、結晶化温度が低くなり、また、結晶相の電気抵抗がアモルファス相に比して小さくなるからである。

【0029】
さらに追加元素として、N、O、Al、Si、CuおよびSbからなる群から選択した少なくとも1種類の元素Mを、
(CrGeTe100-x-y100-z
の形で含み、ここでzは、0.01-5.0(at.%)となるように選択してもよい。

【0030】
N、O、Al、Si、CuおよびSbを0.01-5.0(at.%)追加することで結晶化温度を上昇させる事が可能である。0.01at.%未満では、結晶化温度を上昇させる効果が十分に発揮されず、5.0at.%を超えると、NおよびOの場合、Crを主成分とする窒化物や酸化物が形成されてしまい相変化を生じなくなり、また、Al、Si、CuおよびSbの場合、相変化に寄与しない化合物相が生成してしまい、アモルファス/結晶間の相変化の繰り返し特性に悪影響を及ぼすからである。

【0031】
本発明相変化材料を基板上に形成することにより、不揮発性相変化型メモリ素子が得られる。特に、前記不揮発性メモリ素子は、絶縁層と、絶縁層上に形成された相変化材料層を有し、該相変化材料層を挟んで、あるいはその両端に形成された電極層を含み、該相変化材料層の露出部が絶縁層により覆われていることが望ましい。電極層として、W、TiN、TiW、Al、Cuなどが挙げられる。

【0032】
本発明材料の製造方法としては、CrGeTe100-x-y(x:15.0-25.0(at.%)、y:15.0-25.0(at.%)、34.0(at.%)≦x+y≦48.0(at.%))となる組成範囲内で各種ターゲットを用いた物理蒸着法(スパッタリング等)により各種基板上に成膜する。ターゲットには、純Cr、純Ge、純Teあるいは各2元合金(Cr-Ge、Cr-Te、Ge-Te合金)を用いた多元スパッタリングにより成膜出力を変化させ濃度を調整し成膜する、あるいは予め成分調整した3元合金ターゲット(Cr-Ge-Te合金)を用いて成膜する。また、必要に応じて、Al、Si、CuおよびSbから選択した1種又は2種以上の各種純ターゲットを用いた多元スパッタリング、あるいは予め成分調整した合金ターゲットを用いて、適宜成膜出力を調整することにより成分調整し成膜する。また、NおよびOの追加については、Nガス、OガスあるいはN/O混合ガス流量を調節しながら反応性物理蒸着を行い成膜する事ができる。ここで、成膜時における基板温度は必要に応じて室温-500℃まで変える事ができる。基板温度が作製する材料の結晶化温度よりも低い場合は、材料はアモルファス相を呈し、基板温度が結晶化温度よりも高い場合は、材料は結晶相を呈する。
【実施例】
【0033】
図1は、本発明の種々の実施例に係る相変化材料の物理特性の実測値を表にして示す図である。以下に図1を参照しながら本発明をさらに詳細に説明する。なお、図1では、本発明の理解を容易にするために、本発明の範囲とは異なる組成を有する比較例1-11を示してある。図の実施例1-12に示す材料は、基本的に、CrGeTe100-x-yの組成を有する。ここで、34.0(at.%)≦x+y≦48.0(at.%)である。図1の表では、Cr、GeおよびTeの原子濃度(at.%)を示しているが、この中には、成膜原料中に不可避的に含まれる不純物も含まれている。通常、このような不可避的不純物は数ppmから数十ppmのオーダーであり、従って成膜後の相変化材料の物理特性に対して大きな影響を与えるものではない。
【実施例】
【0034】
物理特性を測定する試料は、実施例1-12、比較例1-11の組成を有する薄膜を、RFスパッタリング装置を用いて基板上に200nm成膜して形成した。ターゲットは純元素Cr、Ge、Teを用い、各ターゲットの成膜出力を変え、各種組成のアモルファス相薄膜を作成した。
【実施例】
【0035】
図1に各組成を有する材料の、結晶化温度Tc(℃)、アモルファス相の電気抵抗Ramo(Ω)、結晶相の電気抵抗Rcry(Ω)、結晶相とアモルファス相の電気抵抗比ΔRを示した。ここで、Ramoは、二端子法において、60℃まで加熱した時のアモルファス相の電気抵抗値とした。また、昇温し結晶化した後の試料を冷却し、60℃になった時の結晶相の電気抵抗値をRcryと定義した。また、電気抵抗比ΔRは、「アモルファス相の60℃での電気抵抗値」と「結晶相の60℃での電気抵抗値」の比とした。
【実施例】
【0036】
図2に、二端子法を用いた昇温過程での電気抵抗測定(昇温速度:9.2℃/分)において得られた電気抵抗‐温度曲線の例を示す。図2の曲線AおよびBに実施例2および実施例10の試料、また、曲線CおよびDに比較例1および比較例6の試料について得られた昇温時における電気抵抗変化を示した。実施例10の試料の挙動について説明する。アモルファス相は低い電気抵抗を示し、温度上昇に伴って電気抵抗は緩やかに減少していき、250℃-290℃の間で大きく電気抵抗が低下する。この時、温度に対する電気抵抗変化が最も大きい温度を結晶化温度Tcと定義できる。その後、電気抵抗は上昇し、降温過程においては半導体的な電気抵抗の温度依存性を示しながら電気抵抗が上昇していく。実施例2も同様な挙動を示す。
【実施例】
【0037】
図1に示すように、実施例1-12の相変化材料は、いずれも270℃以上の結晶化温度を有し、アモルファス相の熱的安定性が高い事が理解される。
【実施例】
【0038】
また、図1のΔRに示すように、実施例1-12の試料はいずれもΔR>1を有し、結晶相の方がアモルファス相よりも高い電気抵抗を有する事が分かる。ここで、ΔRが1より大きくなる、即ち、結晶相の方が電気抵抗が高くなる原因として、本発明材料の結晶相が半導体的性質を有している事が挙げられる。この事は、図1の実施例2および10で示すように、材料を結晶化後、冷却すると電気抵抗が上昇する事から理解できる。つまり、本発明材料の結晶相は、アモルファス相(半導体的性質)よりも高い電気抵抗を有する半導体に結晶化するためΔRが1よりも多くなると考えられる。
【実施例】
【0039】
一方、比較例1-11について見ると、結晶化温度は比較的高いものの、結晶化に伴い電気抵抗は急峻に低下する事が分かる(図2:曲線CおよびD)。また、図1より、ΔR<1であり、いずれの比較例もアモルファス相の方が結晶相よりも高い電気抵抗を有する。図1の比較例1に示すように、Ge-Teといった従来の相変化材料の結晶相は、冷却に伴い電気抵抗は低下する傾向を示し、金属的な振る舞いをしている事が分かる。即ち、従来の相変化材料では、半導体的性質を示すアモルファス相から金属的性質を示す結晶相へと転移することにより電気抵抗が劇的に低下する。また、比較例2~11に示すCr-Ge-Teからなる材料についても、従来の相変化材料と同様に、結晶相の電気抵抗が低いことから、データ書き換え時の消費電力を低減する効果に乏しい。
【実施例】
【0040】
次に、実施例10について、アモルファスが結晶化する際の活性化エネルギーを、昇温速度を変化(9℃/分-50℃/分)させて測定した結晶化温度から、次に示すキッシンジャープロット法により求めた。
ln(α/(Tc))=-Ea/kTp+Const.
ここでα:昇温速度、Tp:熱流ピーク温度、Ea:活性化エネルギー、k:ボルツマン定数である。
【実施例】
【0041】
図3は実施例10について、キッシンジャープロットを行った結果を示すものであり、本結果から結晶化の活性化エネルギーは3.8eVと大きな値を示し、活性化エネルギーの観点からも、優れたアモルファス相の熱的安定性を有していることが確認される。
【実施例】
【0042】
通常、アモルファス相は、結晶化温度Tc以下においても、長時間保持することにより結晶化する。相変化材料における結晶化温度Tc以下でのアモルファス相の結晶化は、PCRAMデバイスの故障を意味する。将来的には、自動車分野など高温環境下での使用を目論み、PCRAMデバイスの作動保証温度は125℃で10年以上とされている。そこで、実施例10について結晶化の活性化エネルギーと結晶化温度から、次式に示すOzawa法により、故障時間を10年間とした時の作動可能温度(言い換えれば、10年間での最大作動保証温度)を求めた。ここで、本実験では、アモルファス相がある温度にて10%結晶化してしまった時間を故障時間とした。
=θnexp(Ea/RTi)
θn=(Ea/αR)p(Ea/RT10%
ここでt:故障時間、Ea:活性化エネルギー、Ti:故障時間における温度、α:昇温速度、R:気体定数、T10%:ある昇温速度において10%結晶化する時の温度である。また、p(Ea/RT10%)関数は次式で示される。
logp(Ea/RT10%)=-2.315-0.4567(Ea/RT10%
【実施例】
【0043】
図4は実施例10についてOzawa法を用いた結果を示すものであり、縦軸は故障時間、横軸は1/kTを示している。ここで、kはボルツマン定数、Tは温度である。この図より、各結晶化温度でのデータ点を10年まで外挿し、その時の温度を見積もる事で、作動保証温度を評価することができる。本結果より、実施例10の試料は、約190℃の作動保証温度を有することが分かる。この温度は、2011年以降の作動保証温度の要求値である、125℃で10年という値を超えており、本試料が熱的安定性にも優れている事が分かる。
【実施例】
【0044】
図5には、実施例10(結晶化温度:270℃)の試料に追加元素を添加した時の結晶化温度を示した。この場合、追加元素Mは、
(CrGeTe100-x-y100-z
の形で含まれ、zは、0.01-5.0(at.%)となるように選択される。例えば実施例13は、図1に示す実施例10の材料にNを、zが2.0(at.%)となるように添加した材料を示す。実施例14-実施例20も同様に、実施例10の材料に、図示の追加元素Mを図示の濃度だけ添加した材料を示す。図5から明らかなように、N、O、Al、Si、CuおよびSbのいずれか一種以上の元素を実施例10の材料に添加する事により、結晶化温度が上昇する事が分かる。なお、その他の実施例材1-9、11及び12については実験を行っていないが、実施例10の場合と同様の傾向があるとの蓋然的な推測が可能である。従って、本発明の材料に、必要に応じて追加元素を添加することで、アモルファス相の熱的安定性を高める事が可能となる。
【実施例】
【0045】
続いて、本発明相変化材料を用いたメモリ特性について行った実施例について説明する。通常、相変化型メモリは、電極を通して電気パルスを印加し、相変化材料をジュール加熱して相変化させる。また、その相変化により得られる電気抵抗比が大きければ大きいほど、データの読み取り精度は向上する。近年、メモリの高集積化に伴い、メモリセル構造の微細化が重要になっているが、微細化に伴ってメモリデバイスの全電気抵抗は、相変化材料それ自体の電気抵抗値ではなく、電極/相変化材料間のコンタクト抵抗値によって支配される。そこで、実施例10について、CTLM法を用いて電極としてWを用い、W/相変化材料のコンタクト比抵抗を測定した。(なお、CTLM法については、例えば、E.K.Chua et al.Appl.Phys.Lett.101(2012)012107参照。)
【実施例】
【0046】
図6は実施例10について、CTLM法によりコンタクト比抵抗を測定した結果を示す図である。縦軸はコンタクト比抵抗、横軸は試料の加熱温度を表している。図示するように、150℃、270℃、290℃、350℃、380℃の5種類の温度を選択し、試料をそれぞれの温度まで加熱した後、室温においてコンタクト比抵抗を測定した。本結果より、結晶化が進行するに伴ってコンタクト比抵抗値は上昇し、380℃まで加熱した試料では、150℃まで加熱した試料に対し二桁以上の抵抗比が得られることが分かる。このことは、実用相変化型メモリとして十分なデータ読み取り信頼性が得られることを示している。
【実施例】
【0047】
続いて、実施例10に示す試料を用いて、図7に示すメモリセルを作製し、パルス電圧印加によるメモリスイッチング動作を調査した。ここで、図7は、本実験にて用いた相変化型不揮発性メモリセル構造の断面図を示している。図において、1はSiO/Si基板、2は基板1上に形成した下部電極層、3は図1に示す実施例10の材料で形成された相変化材料層、4は相変化材料層3の表面の一部を被覆するSiO層、5は相変化材料層3に接触してSiO層4上に形成された上部電極層、を示している。なお、上下の電極層2、5は、本実験ではWによって形成した。
【実施例】
【0048】
図8は、作製したメモリデバイスに対して、パルス電圧を印加した時の電気抵抗変化を示すものである。初期状態は、低い電気抵抗を示すアモルファス状態であり、その抵抗値は、2.1×10Ωであった。そこに、パルス幅20nsで0.4Vの電圧を印加した所、結晶化が生じ、1.4×10Ωへと電気抵抗が増加した。0.4V以上の電圧を印加しても高い電気抵抗状態を維持するが、パルス幅20nsで1.5Vの電圧を印加した所、アモルファス化が生じ、電気抵抗が5.5×10Ωへと減少する事が分かった。この値は初期状態とほぼ同様の値である。このことから、本発明材料は、電気パルスを用いたジュール加熱により、情報の書き込み・消去が可能である事が確認された。
【実施例】
【0049】
図9および図10の(a)-(d')に、実施例10の試料を複数の温度に加熱して撮ったTEM(透過型電子顕微鏡)写真を示す。これらのTEM写真は、実施例10の試料が温度によってアモルファス相から結晶相へと変化していることを示すものである。図9の(a)は、結晶化温度Tc(270℃)の直前である260℃で撮ったTEM写真であり、試料がアモルファス相を示していることが分かる。(b)は、結晶化温度Tcの直後である290℃で撮ったTEM写真であり、(b)の拡大図である(b’)から明らかなように、この温度では実施例10の試料はアモルファス相から結晶相へと変化していることが分かる。図10の(c)は、実施例10の試料をさらに高い温度350℃まで加熱した状態のTEM写真、(c’)はその拡大図である。(d)は、実施例10の試料を温度380℃まで加熱した状態のTEM写真、(d’)はその拡大図である。図(b’)、(c’)および(d’)より明らかなように、試料10を結晶化温度Tcを超えてさらに加熱していくと、温度上昇と共に結晶粒が粗大化していくことが分かる。実施例10の材料は、結晶相において電気抵抗が上昇するという稀な挙動を示すが、その特異な挙動を示す温度域においても、組織的には通常の結晶粒粗大化が生じていることが分かる。
【産業上の利用可能性】
【0050】
本発明の相変化材料は、高い結晶化温度を有し、アモルファス相より高い電気抵抗を有する結晶相が得られるという効果を有する。従って、該相変化材料を用いる事により、高温データ保持性や低消費電力を有する不揮発性半導体メモリに利用する事ができる。また、半導体メモリのみならず、GSTと同様、結晶相およびアモルファス相におけるレーザー光の反射率を利用したDVD-RAM等の光記録媒体などに使用する事ができる。本発明は、前記の実施例によってなんら限定されるものではない。すなわち、本発明の技術思想の範囲における他の例、態様等を当然含むものである。
【符号の説明】
【0051】
1 SiO/Si基板
2 W下部電極層
3 相変化材料層
4 SiO誘電体層
5 W上部電極層
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9