TOP > 国内特許検索 > 細胞の分離回収装置及び方法 > 明細書

明細書 :細胞の分離回収装置及び方法

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2019-150016 (P2019-150016A)
公開日 令和元年9月12日(2019.9.12)
発明の名称または考案の名称 細胞の分離回収装置及び方法
国際特許分類 C12M   1/00        (2006.01)
C12N   1/00        (2006.01)
FI C12M 1/00 A
C12N 1/00 Z
請求項の数または発明の数 13
出願形態 OL
全頁数 31
出願番号 特願2019-034487 (P2019-034487)
出願日 平成31年2月27日(2019.2.27)
優先権出願番号 2018034952
優先日 平成30年2月28日(2018.2.28)
優先権主張国 日本国(JP)
発明者または考案者 【氏名】須加 実
【氏名】篠原 寛明
出願人 【識別番号】305060567
【氏名又は名称】国立大学法人富山大学
個別代理人の代理人 【識別番号】100099623、【弁理士】、【氏名又は名称】奥山 尚一
【識別番号】100107319、【弁理士】、【氏名又は名称】松島 鉄男
【識別番号】100125380、【弁理士】、【氏名又は名称】中村 綾子
【識別番号】100142996、【弁理士】、【氏名又は名称】森本 聡二
【識別番号】100166268、【弁理士】、【氏名又は名称】田中 祐
【識別番号】100170379、【弁理士】、【氏名又は名称】徳本 浩一
【識別番号】100096769、【弁理士】、【氏名又は名称】有原 幸一
審査請求 未請求
テーマコード 4B029
4B065
Fターム 4B029AA27
4B029BB07
4B029BB11
4B029CC01
4B029DG08
4B065AA72X
4B065AA90X
4B065BD14
4B065BD50
4B065CA46
要約 【課題】 死細胞または生細胞を選択的に、高精度で分離する、細胞の分離回収装置及び方法を提供する。
【解決手段】 底面と上面とが対向する電極で構成され、少なくとも一方の前記電極と離間して、前記電極間に設けられた微細孔絶縁膜を備えるセルと、前記電極に所定範囲の周波数を印加する交流発振器とを備え、前記絶縁性薄膜の微細孔径が、所望の細胞の最小径より大きく、最小径の2.5倍以下である、細胞の分離回収装置。
【選択図】 図1
特許請求の範囲 【請求項1】
対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、
前記2つの導電性層間に所定範囲の周波数を印加する交流発振器と
を備え
(a)前記微細孔が、円筒形状であり、前記微細孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である、または、
(b)前記微細孔が、円錐台型、階段型、鼓型、糸巻型、または壺型から選択される非円筒形状であり、前記微細孔の吸入口の孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である、
細胞の分離回収装置。
【請求項2】
前記対向して設けられる導電性層が前記セルの底面と上面とを構成する電極であり、
前記微細孔薄膜が、少なくとも一方の前記電極と離間して、前記電極間に設けられた微細孔絶縁膜である、
請求項1に記載の分離回収装置。
【請求項3】
前記対向して設けられる導電性層の少なくとも一方が、前記微細孔絶縁膜面を被覆する導電性被覆層である、請求項1に記載の分離回収装置。
【請求項4】
前記対向して設けられる導電性層の一方が、前記セルの底面もしくは上面を構成する電極であり、
前記対向して設けられる導電性層の他方及び前記微細孔薄膜が、前記電極と離間して設けられ、絶縁性被覆層で被覆された導電性網もしくは篩である、
請求項1に記載の分離回収装置。
【請求項5】
前記対向して設けられる導電性層の少なくとも一方が、導電性網もしくは篩であり、前記微細孔薄膜が、前記導電性網もしくは篩と離間してまたは接触して設けられる、請求項1に記載の分離回収装置。
【請求項6】
前記微細孔薄膜が7~30μmの厚さのトラックエッチドメンブレン、UVレーザー加工膜、またはフォトリソグラフィ加工膜である、請求項1~5のいずれか1項に記載の装置。
【請求項7】
前記微細孔絶縁膜が、前記電極の一方に接して、前記電極を被覆するように設けられる、請求項2に記載の装置。
【請求項8】
前記微細孔絶縁膜が、前記底面を構成する電極と、前記上面を構成する電極の両者から離間して、前記セルを分断するように設けられる、請求項2に記載の装置。
【請求項9】
前記セルが、分離対象細胞を含む試料懸濁液の入口と、出口とをさらに備える、請求項2に記載の装置。
【請求項10】
前記2つの導電性層間に設けられた1以上の微細孔薄膜が、互いに離間して設けられる2以上の微細孔絶縁膜であって、2以上の微細孔絶縁膜の微細孔径がそれぞれ異なっており、上面に近い微細孔絶縁膜から底面に近い微細孔絶縁膜にかけて、微細孔径が順次小さくなる、請求項2に記載の装置。
【請求項11】
上面が開放系である、請求項3、4または5のいずれか1項に記載の装置。
【請求項12】
対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセル中に、分離対象細胞を含む細胞懸濁液を注入する工程と、
前記一対の導電性層に、死細胞もしくは生細胞を選択的に前記微細孔に吸引または吐出する周波数を切り換えて印加する工程と
を含む、細胞の分離回収方法。
【請求項13】
周波数を印加する工程により、前記微細孔薄膜の微細孔内に不均一電界を発生させる、請求項12に記載の方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、細胞を高精度で分離回収する装置及び方法に関する。
【背景技術】
【0002】
バイオテクノロジーや医療などの分野では、特定の細胞を選択し分離する技術が不可欠である。蛍光標識によるフローサイトメトリーや、磁気細胞分離などが広く使われているが、非常に高価で細胞への障害も大きい。それに対し安価で非侵襲なマイクロ流路と交流動電現象である誘電泳動を組み合わせた分離方法が考案されているが、分離精度が低く処理量も少ない問題がある。
【0003】
効率的な分離処理のため、複数の細孔を有する絶縁膜を用い、細孔内及び入口周辺に不均一電界を形成して、細胞の誘電特性の違いで一度に大量の細胞を分離するシステムが知られている。しかし、そのような技術は大量処理を優先しているため、細孔径は細胞サイズに比べ極端に大きいものが多く、逆に分離精度の低下が生じている。
【0004】
具体的には、分離の対象となる一般的な細胞のサイズ(最小径が数μm)よりかなり大きな直径100~200μmの細孔有り絶縁膜を用いた、細胞分離システムが知られている(例えば、特許文献1、非特許文献1、2を参照)。このシステムでは、孔周辺部に不均一電界を形成し、一度に大量の細胞を分離することができる。特には、交流印加による負の誘電泳動力で穴に入らないものと、直流成分による電気泳動力で穴を通過するものとを分離する。しかし、分離精度が非常に悪いという問題がある。
【0005】
細胞より大きな直径30μmのアレイ状の細孔内に正の誘電泳動力で細胞を導入保持し、さらに他の手法により細胞を固定し、標本化して分析する技術も知られている(例えば、特許文献2、非特許文献3を参照)。
【0006】
他に、細胞が通過できない直径130nmの超微細孔を有する絶縁膜を用い、細胞を正の誘電泳動力で電界強度が強くなる細孔上部の膜表面付近に捕捉する技術も知られている(例えば、非特許文献4を参照)。しかし、この技術では、誘電泳動力のみで細胞を吸着しているため、膜表面への細胞の捕捉力が弱く保持するのが困難である。
【0007】
細胞よりかなり大きい直径100μmのアレイ状の細孔有り絶縁膜を用い、細胞を正の誘電泳動力で電界強度が強くなる細孔内の壁面部又は細孔入口周辺に吸着させ濃縮する技術も知られている(例えば、非特許文献5を参照)。しかし、この技術でも捕捉力が弱く、細胞を保持するのが困難である。
【0008】
多層電極層に垂直に直径400μmの細孔を貫通させることで、細孔内の壁面部に複数の電界強度の強い場所を発生させ正の誘電泳動力で生細胞を吸着させ、死細胞は負の誘電泳動力により吸着せず細孔内を通過させる技術も知られている(例えば、非特許文献6を参照)。この技術は、大量に処理することができるが分離精度はまだ低い。また吸着した生細胞が金属電極に接触するため細胞への障害が懸念される。
【先行技術文献】
【0009】

【特許文献1】特開2009-65967号公報
【特許文献2】特開2016-174596号公報
【0010】

【非特許文献1】静電気学会誌,30,140-145,2006
【非特許文献2】BiotechnolProg,32,1292-1300,2016
【非特許文献3】PLoSOne,2015Jun24;10(6):e0130418
【非特許文献4】AnalChem,80,657-664,2008
【非特許文献5】Electrophoresis,30,3153-3159,2009
【非特許文献6】ProcNatlAcadSciUSA,114,4591-4596,2017
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、上記問題点に鑑みてなされたものである。すなわち、ジュール熱による影響や、障害を細胞に与えることなく、生細胞と死細胞を高い精度で分離し、かつ強固に捕捉することができる装置並びに方法を提供することを目的とする。
【0012】
本発明は、一実施形態によれば、以下の[1]~[13]のとおりである。
[1] 細胞の分離回収装置であって、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備え
(a)前記微細孔が、円筒形状であり、前記微細孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である、または、
(b)前記微細孔が、円錐台型、階段型、鼓型、糸巻型、または壺型から選択される非円筒形状であり、前記微細孔の吸入口の孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である。
[2] 前述の[1]に記載の分離回収装置において、前記対向して設けられる導電性層が前記セルの底面と上面とを構成する電極であり、前記微細孔薄膜が、少なくとも一方の前記電極と離間して、前記電極間に設けられた微細孔絶縁膜であることが好ましい。
[3] 前述の[1]に記載の分離回収装置において、前記対向して設けられる導電性層の少なくとも一方が、前記微細孔絶縁膜面を被覆する導電性被覆層であることが好ましい。
[4] 前述の[1]に記載の分離回収装置において、前記対向して設けられる導電性層の一方が、前記セルの底面もしくは上面を構成する電極であり、前記対向して設けられる導電性層の他方及び前記微細孔薄膜が、前記電極と離間して設けられ、絶縁性被覆層で被覆された導電性網もしくは篩であることが好ましい。
[5] 前述の[1]に記載の分離回収装置において、前記対向して設けられる導電性層の少なくとも一方が、導電性網もしくは篩であり、前記微細孔薄膜が、前記導電性網もしくは篩と離間してまたは接触して設けられることが好ましい。
[6] 前述の[1]~[5]のいずれか1に記載の分離回収装置において、前記微細孔薄膜が7~30μmの厚さのトラックエッチドメンブレン、UVレーザー加工膜、またはフォトリソグラフィ加工膜であることが好ましい。
[7] 前述の[2]に記載の分離回収装置において、前記微細孔絶縁膜が、前記電極の一方に接して、前記電極を被覆するように設けられることが好ましい。
[8] 前述の[2]に記載の分離回収装置において、前記微細孔絶縁膜が、前記底面を構成する電極と、前記上面を構成する電極の両者から離間して、前記セルを分断するように設けられることが好ましい。
[9] 前述の[2]に記載の分離回収装置において、前記セルが、分離対象細胞を含む試料懸濁液の入口と、出口とをさらに備えることが好ましい。
[10] 前述の[2]に記載の分離回収装置において、前記2つの導電性層間に設けられた1以上の微細孔薄膜が、互いに離間して設けられる2以上の微細孔絶縁膜であって、2以上の微細孔絶縁膜の微細孔径がそれぞれ異なっており、上面に近い微細孔絶縁膜から底面に近い微細孔絶縁膜にかけて、微細孔径が順次小さくなることが好ましい。
[11] 前述の[3]、[4]または[5]のいずれかに記載の分離回収装置において、上面が開放系であることが好ましい。
[12] 細胞の分離回収方法であって、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセル中に、分離対象細胞を含む細胞懸濁液を注入する工程と、前記一対の導電性層に、死細胞もしくは生細胞を選択的に前記微細孔に吸引または吐出する周波数を切り換えて印加する工程とを含む。
[13] 前述の[12]に記載の細胞の分離回収方法であって、周波数を印加する工程により、前記微細孔薄膜の微細孔内に不均一電界を発生させることが好ましい。
【発明の効果】
【0013】
本発明にかかる、細胞の分離回収装置及び方法によれば、周波数印加による正もしくは負の誘電泳動力で特定の誘電特性をもつ細胞を微細孔絶縁膜の微細孔内に導入又は非導入することができ、細胞よりわずかに大きい微細孔径を用いることで、水流などで容易に剥がれにくい程度に強固に捕捉することができる。また、特に非球形の細胞では濾過法では通過し難い孔径でも特定の誘電特性をもつ細胞のみを微細孔内に吸引できるため、分離精度を向上させることができる。また、微細孔絶縁膜の微細孔径を小さくすると細孔内に強い電界強度が得られるので低い印加電圧でも誘電泳動力が発生する。このため、熱の発生が抑制され細胞への障害も少なくなる。さらに、生細胞と死細胞の誘電特性による選択分離だけでなく、適切な微細孔径を用いることで細胞サイズによる分離も同時に行うことができる。さらに、微細孔の形状により、微細孔内に不均一電界を発生させ、生細胞または死細胞に特定の誘電泳動を生じさせる周波数を印加し、これを連続的に切換えることで、細胞の微細孔内への吸引及び微細孔内からの吐出を繰り返すことが可能となる。これにより、特定の細胞のみを連続的に微細孔を通過させて、セル中の膜等で区切られたある層から、別の層に分離することが可能となる。さらに、メッシュ状の導電体や、微細孔絶縁膜に被覆した導体膜を、周波数を印加する電極とすることで、細胞懸濁液が滴下で注入しやすいよう上面が開放されたセルを構成することが可能となる。
【図面の簡単な説明】
【0014】
【図1】図1は、本発明の一実施形態に係る、細胞の分離回収装置の構成を示す図である。
【図2】図2は、本発明の別の実施形態に係る、細胞の分離回収装置の構成を示す図である。
【図3】図3は、誘電泳動による、孔径5μmの微細孔内への細胞吸引前の、100倍の顕微鏡写真である。
【図4】図4は、誘電泳動による、孔径5μmの微細孔内への細胞吸引後の、100倍の顕微鏡写真である。
【図5】図5は、誘電泳動による、孔径20μmの微細孔内への細胞凝集状態を示す100倍の顕微鏡写真である。
【図6】図6は、低周波側から周波数を掃引したときの外部導電率ごとの生細胞と死細胞の微細孔内吸引細胞割合を示すグラフである。
【図7】図7は、高周波側から周波数を掃引したときの外部導電率ごとの生細胞と死細胞の微細孔内吸引細胞割合を示すグラフである。
【図8】図8は、20MHz印加前後の蛍光染色した生死混合細胞懸濁液の顕微鏡写真であって、(A)は印加前、(B)は印加後の写真を示す。(A)、(B)中、左パネルは明視野画像の写真で、右パネルは蛍光画像の写真を示す。
【図9】図9は、50kHz印加前後の蛍光染色した生死混合細胞懸濁液の顕微鏡写真であって、(A)は印加前、(B)は印加後の写真を示す。(A)、(B)中、左パネルは明視野画像の写真で、右パネルは蛍光画像の写真を示す。
【図10】図10は、円筒形状の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図11】図11は、実施例の円筒型細孔の中心線上の電界強度を示すグラフである。
【図12】図12は、円錐台型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図13】図13は、実施例の円錐台型微細孔の中心線上の電界強度を示すグラフである。
【図14】図14は、二段の階段型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図15】図15は、三段の階段型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図16】図16は、鼓型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図17】図17は、糸巻型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図18】図18は、壺型の微細孔をもつ微細孔絶縁膜の一例を示す概念図である。
【図19】図19は、上面が導電性被覆層で被覆された微細孔絶縁膜を備えるセル構成の一例を示す概念図である。
【図20】図20は、上面及び細孔内壁部が導電性被覆層で被覆された微細孔絶縁膜を備えるセル構成の一例を示す概念図である。
【図21】図21は、下面が導電性被覆層で被覆された微細孔絶縁膜を備えるセル構成の一例を示す概念図である。
【図22】図22は、上面及び下面が導電性被覆層で被覆された微細孔絶縁膜を備えるセル構成の一例を示す概念図である。
【図23】図23は、絶縁性被覆層で被覆された導電性網もしくは篩を備えるセル構成の一例を示す概念図である。
【図24】図24は、上面電極に代えて、導電性網もしくは篩を電極として設けたセル構成の一例を示す概念図である。
【図25】図25は、上面及び底面電極に代えて、導電性網もしくは篩を電極として設けたセル構成の一例を示す概念図である。
【図26】図26は、極薄フィルムを用いたラミネート式流路付膜フィルタによるセル構成の一例を示す概念図である。
【図27】図27は、生細胞または死細胞を懸濁させる外部溶液の導電率に対する、周波数とクラウジウス-モソッティ因子の実部(Re CMf)の関係を示すグラフである。
【図28】図28は、培地溶液中での円錐台型微細孔への生細胞の印加周波数に対する吸引割合と吐出割合を示すグラフである。
【図29】図29は、実施例の階段(1段及び2段)型、鼓型、糸巻型、壺型細孔の中心線上の電界強度を示すグラフである。
【図30】図30は、実施例の微細孔絶縁膜に導体皮膜を付した態様、及び導電性網もしくは篩で構成される導体膜に絶縁皮膜を付した態様における微細孔の中心線上の電界強度を示すグラフである。
【図31】図31は、第2実施形態の変形形態に係るセルであって、水平方向において微細孔の孔径が異なる微細孔絶縁膜を用いた、細胞の径による選択的な分離を可能とするセルを示す概念図である。
【図32】図32は、導電性網もしくは篩を電極として設けたセルであって、底面側の導電性網もしくは篩の下方に漏斗状の細胞濃縮部位並びに追加の電極を備えるセルを示す概念図である。
【発明を実施するための形態】
【0015】
以下に、本発明を、図面を参照して詳細に説明する。以下の説明は、本発明を限定するものではない

【0016】
本発明による細胞の分離回収装置は、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備える。このような分離回収装置において、(a)前記微細孔が、円筒形状であり、前記微細孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である、または、(b)前記微細孔が、円錐台型、階段型、鼓型、糸巻型、または壺型から選択される非円筒形状であり、前記微細孔の吸入口の孔径が、分離対象細胞の最小径より大きく、最小径の2.5倍以下である。本発明による分離回収装置は微細孔内に、微細孔外よりも強い電界強度を形成することで、微細孔薄膜により区切られた一方の領域から所定の細胞を微細孔内に吸引して保持し、あるいは任意選択的に、微細孔内に吸引して他方の領域に吐出させるものである。以下、各実施形態について説明する。

【0017】
[第1実施形態]
本発明の第1実施形態による、細胞の分離回収装置は、本発明による前記分離回収装置において、前記対向して設けられる2つの導電性層が前記セルの底面を構成する電極と、上面とを構成する電極であり、前記微細孔薄膜が、少なくとも一方の前記電極と離間して、前記電極間に設けられた微細孔絶縁膜である形態である。本実施形態による細胞の分離回収装置を図1に示す。第1実施形態による細胞の分離回収装置は、主として、セル10と、交流発振器20とから構成される。

【0018】
セル10と、交流発振器20とは接続されており、交流発振器20は、セル10内の細胞懸濁液5に所定範囲の周波数を印加することができるように構成される。セル10は、一対の電極2a、2bを備え、一方の電極2bが底面に、他方の電極2aが上面に位置するように配置される。図1は、セルを電界方向に垂直な方向からみたセル断面の概念図である。上面を構成する電極2aと、底面を構成する電極2bは、それぞれガラス基板1a、1b上に形成されており、これらの電極2a、2bの間に、分離回収対象となる細胞6を含む細胞懸濁液5が挟まれた状態になっている。そして、底面を構成する電極2bの液体接触面に、微細孔絶縁膜3が設けられている。電極2a、2bは、それぞれ、交流発振器20に接続される。

【0019】
細胞の分離回収装置を構成する各部分についてさらに説明する。セル10は、分離対象となる細胞を含む細胞懸濁液を注入し、細胞懸濁液に所定の範囲の周波数を印加するための容器である。このようなセル10は、2枚の対向する電極のあいだに、所望の厚さのスペーサ4を挟み、細胞懸濁液5を注入することにより作製することができる。セル10は、2枚の電極の一方が底面に、他方が上面になるように配置する。

【0020】
電極としては、導電性を備え、任意選択的に透明性を備える電極を用いることができる。特に、細胞の分離回収の工程を観察可能とする観点からは、透明電極を用いることができ、ガラス基板上に設けたITO、FTO等の導電性薄膜を用いることができるが、これらには限定されない。一例として、液晶ディスプレイ用の透明電極等を用いることができる。またその他の例として、金や白金を10~100nm程度の薄膜に蒸着したガラス基板やプラスチック基板も導電性と透明性を有しており、用いることができる。ガラス基板上のITOからなる透明電極を用いる場合には、ガラス基板の厚さは、0.12~1.5mmとすることができるが、この範囲には限定されない。また、ITOの膜の厚さは、50nm~400nm程度のものを用いることができるが、この範囲には限定されない。不透明の電極は、特に限定されるものではなく、任意の汎用の電極を用いることができる。

【0021】
本実施形態においては、底面となる電極2bのセル内側の面、すなわち液体接触面に微細孔絶縁膜3が設けられている。微細孔絶縁膜3は、電極2bのセル内側の面の全体を覆う必要はないが、少なくとも細胞懸濁液5と接する領域にある電極2bの表面を覆う態様で設けられることが好ましい。微細孔絶縁膜3は絶縁性膜であって、微細孔31を備える膜である。微細孔絶縁膜3は、強度と柔軟性を備え、表面が平滑であり、低タンパク吸着性、耐熱性を備えるもの好ましい。これらの特性は、分離操作において、それぞれ、膜が破れず、微細孔31部に高電界を形成しやすく、細胞回収率を上げることができ、オートクレーブ滅菌可能であるという効果をもたらすことができる。さらに、顕微鏡などで観察する観点からは、透明性をも備えるものであることが好ましい。これらの特性を満たす微細孔絶縁膜3は、プラスチック製のものであってよく、特には、ポリカーボネート、ポリエチレンテレフタラート、ポリイミド、ポリジメチルシロキサン(PDMS)、エポキシ樹脂フォトレジスト、例えば製品名SU-8(化薬マイクロケム製)を用いることができるが、これらには限定されない。微細孔絶縁膜3の厚さは、7~30μm程度であることが好ましい。薄すぎると、細胞が孔内に収納されない、また膜が破れやすい場合があり、厚すぎると、細孔近傍の電界強度が弱くなり吸引され難くなるため、高電圧印加の必要性が生じる場合がある。なお、微細孔絶縁膜3は、典型的には連続的な一枚の膜であるが、水平方向に連続して配置することができれば、二枚以上の同一または異なる膜をスペーサ等を用いて、水平方向に繋ぎ合わせた態様であってもよい。

【0022】
微細孔絶縁膜3に設けられる微細孔31の直径もしくは最小径は、分離対象の細胞の最小径より大きく、細胞の最小径の2.5倍以下とする。なお、微細孔の孔径は、第2実施形態に詳述する各態様により、微細孔の形状が、1つの微細孔においてその孔径が膜の厚さ方向に実質的に均一である円筒形状の場合は直径により表すものとする。微細孔の形状が、1つの微細孔においてその孔径が膜の厚さ方向によって変化する非円筒形状の場合は、最小径により表すものとする。本発明においては、分離対象細胞の形状は特に限定されないため、微細孔31の直径もしくは最小径は、細胞の最小径に基づいて決定する。細胞の最小径は、例えば、真球形細胞の場合は直径、円筒形細胞又は卵形細胞の場合は短軸径(卵形はとがった方を上または下に置き、水平に切った断面図の短軸径が最大となる箇所における径)、雪だるま状(2つの球体が繋がった形状)細胞の場合には大きい方の球体の短軸径等により定義される。典型的には、微細孔31の直径もしくは最小径は1~10μm程度であってよいが、特定の範囲には限定されない。

【0023】
微細孔31は、孔径が実質的に均一であり、微細孔絶縁膜3の表面から切り立って設けられた均一な円筒形状(ホール形状)であることが好ましい。このような形状に設けられた微細孔31は、微細孔外周辺に細胞の誘電泳動に必要な不均一電界を発生させるのに好適である。なお、微細孔31の径に多少の不均一性がある場合も、微細孔31の直径とは、最小径をいうものとする。また、微細孔31は、膜を貫通するものであってもよく、貫通しないものであってもよいが、少なくとも分離対象の細胞の最大径よりも大きい深さの孔であることが好ましい。さらに、微細孔31は、その深さ方向が膜の表面(主面)に対して、略直角であることが好ましいが、深さ方向が膜の表面に対して最大で40°程度傾いていてもよい。あるいは、微細孔は、第2実施形態において詳述するような、非円筒形状の孔であってもよい。

【0024】
微細孔絶縁膜3に設けられる、微細孔31の密度は、100,000個/cm以上であって、400,000個/cm以下程度であることが好ましいが、特定の密度には限定されない。このような微細孔絶縁膜3は、微細孔径が小さいので微細孔密度を増やすことが容易であり、微細孔数を多くすることで、大量処理が可能となる。また、膜の面積を増やすことによっても大量処理が可能になる。なお、繊維を編み込んだ表面が平滑でないメンブランフィルタは、不均一な電界が形成されず、電界が均一化するため、本発明における微細孔絶縁膜としては好ましくない。また、一枚の微細孔絶縁膜3に設けられる複数の微細孔31間で、孔径は同一であっても異なっていてもよい。一枚の微細孔絶縁膜3に異なる孔径の微細孔を設けることにより、細胞の径によって分離分別することもできる。詳細な態様は、図31を参照して後述する。

【0025】
好ましい微細孔絶縁膜3の一例として、トラックエッチドメンブレンを用いることができる。トラックエッチドメンブレンは、トラックエッチング法により形成された微細孔膜であって、孔径サイズと孔形状の均一性の観点から、特に好ましい。トラックエッチング法によれば、所望の孔径、孔形状、厚さ、及び微細孔密度をもつトラックエッチドメンブレンを適宜製造することができる。また、濾過用膜フィルタとして市販されているトラックエッチドメンブレンを使用することができ、この場合は特に、大量生産、無菌、使い捨てが可能である点において有利である。あるいは、微細孔絶縁膜3は、UVレーザーにより加工された膜、またはフォトリソグラフィにより加工された膜であってもよい。

【0026】
本実施形態において、細胞の分離回収を行う際のセル10の配置は微細孔絶縁膜3が設けられた面を底面とする。誘電泳動力及び重力により微細孔絶縁膜3に所定の細胞を吸引して、分離するためである。図示する実施形態において上面の電極の液体接触面には被覆膜は設けられていないが、例えば、10nm~5μm程度の絶縁性被覆層が設けられていてもよい。電気分解と細胞吸着を防止し細胞回収率を向上させるためである。同様の目的で、後述する全ての実施形態において、本発明の「対向して設けられる2つの導電性層」に該当する層、すなわち周波数を印加する導電層の、細胞懸濁液と接する面を絶縁薄膜被覆することができる。

【0027】
スペーサ4は、絶縁性であり、細胞懸濁液5に対して不活性な部材であればよく、例えば、ポリジメチルシロキサン、シリコンゴム、硬質ゴム、ポリイミド、SU-8やプラスチック等の樹脂を用いることができるが、これらには限定されない。スペーサ4の厚さは、1~300μmとすることが好ましく、10~100μmとすることがさらに好ましい。スペーサ4の厚さは、電極間の距離を決定し、すなわち、電界強度を決定する。ただし、上記値は一般的な厚さであって、スペーサ4の厚さは、分離対象とする細胞の大きさ(最大径)をも考慮して決定することが好ましい。すなわち、スペーサ4の厚さは、細胞の大きさの1倍~30倍程度とすることができるが、この範囲には限定されない。

【0028】
セル10は、上面及び底面から細胞懸濁液5を挟み込むだけのものであってもよく、密閉系としてもよい。あるいは、図1には示していないが、細胞懸濁液の注入口と、排出口とを備え、細胞懸濁液の流通が可能なフローセルとしてもよい。この場合、セルの外部に、送液及び排液のためのポンプやリザーバなどを備えていてもよい。セル10の大きさは、特には限定されないが、必要な量の細胞を分離回収することができるものであればよい。

【0029】
交流発振器20は所定の範囲の周波数を印加することができるものであればよい。具体的には、1kHz~100MHz程度の範囲の周波数を印加することができるものであればよく、市販の交流発振器であってよい。ただし、内部抵抗が50Ω~75Ωで、10Vp-pの出力が可能なものが好ましい。また、交流発振器20には、増幅器を接続することもできる。かかる構成により、電圧を増幅することもできる。交流発振器20の出力波形は、正弦波に限らず、方形波や三角波などとすることもできる。また高周波直流パルスとすることもできる。

【0030】
次に、本発明の一実施形態に係る、細胞の分離回収方法について説明する。本実施形態にかかる細胞の分離回収方法は、上記細胞の分離回収装置を用いて行うことができる。本実施形態にかかる分離回収方法は、底面と上面とが対向する電極で構成されたセルであって、少なくとも底面を構成する電極の液体接触面が、所望の細胞の最小径より大きく、最小径の2.5倍以下の微細孔径をもつ微細孔絶縁膜で被覆されているセル中に、分離対象細胞を含む細胞懸濁液を注入する工程と、前記一対の電極に、死細胞もしくは生細胞を選択的に前記微細孔に吸引する周波数を印加する工程とを含む。

【0031】
上記分離回収方法の各工程を行う前段階として、分離対象細胞を含む細胞懸濁液の調製を行う。分離対象細胞は、特には限定されず、絶縁性の膜で覆われている誘電体粒子として存在する任意の細胞を分離することができる。したがって、その形状についても限定されることはなく、真球系、円筒形、卵形、雪だるま形など、任意の形状の微生物細胞、動物細胞が挙げられる。分離対象の具体例として、円筒形状の分裂酵母(Schizosaccharomyces pombe)などのSchizosaccharomyces属酵母、卵形と雪だるま形状のSaccharomyces cerevisiaeなどのSaccharomyces属酵母、Candida属酵母、Pichia属酵母、Rhodotorula属酵母、赤血球、血小板、藻類、微細藻類、単細胞生物(ミドリムシ、ゾウリムシなど)、大腸菌、乳酸桿菌、サルモネラ菌、細胞壁を消化した真球形の酵母プロトプラスト、ラット副腎褐色細胞腫PC12、スフェロイド(細胞凝集塊)、球菌、連鎖球菌などが挙げられるが、これらには限定されない。

【0032】
細胞の由来は問わないが、例えば、組換えタンパク質、抗生物質やワクチン、バイオ燃料、あるいは食品の製造工程に用いる微生物細胞であってよい。その場合は、製造工程のバッジやラインから、サンプリングすることにより、細胞を採取することができる。一例として、微生物発酵後の死細胞除去として用いる場合には、接続したチューブなどを通して外部に連続的に循環させることにより微生物細胞の採取や分離ができる。あるいは、微生物以外の細胞は、ヒトやその他の哺乳動物から採取した血液由来の細胞や敗血症の原因となるバクテリアであってもよい。

【0033】
採取した細胞は、例えば遠心分離機やフィルタ等を用いて、夾雑物を事前に除去する前処理をすることができる。前処理により、分離精度を上げることができるためである。前処理をした細胞は、酵母の場合には、細胞懸濁液として調製するために用いる。細胞懸濁液は、培養液を直接、超純水、蒸留水、イオン交換水、pH緩衝液で希釈することで調製することができる。また非電解質の浸透圧調整剤として、ソルビトール溶液、マンニトール溶液、グリセロール溶液、スクロース溶液などを用いることができるが、これらには限定されない。この態様によれば、水や低電導率溶液や非電解質浸透圧調整溶液などで細胞を洗浄するといった前処理を省くことができ、洗浄による手間や時間を短縮することができる。よって、細胞懸濁液を培養槽からの送液などによってセルに直接供給することが可能になり、迅速で連続式の分離ができる。

【0034】
細胞懸濁液において、細胞濃度は、1×10~1×10cells/mL程度であることが好ましく、5×10~5×10cells/mL程度であることがより好ましい。また、細胞懸濁液の導電率(外部導電率ともいう)は、死細胞のみを吸引して回収する場合には、0.01~100mS/mとなるように調整することが好ましく、0.1~50mS/mとすることがより好ましい。一方、細胞懸濁液の導電率は、生細胞のみを吸引して回収する場合には、100~1000mS/mであることが好ましい。このような導電率の範囲であれば、生細胞のクラウジウス-モソッティ因子が正となる周波数範囲で正の誘電泳動力が発生し吸引される。なお、クラウジウス-モソッティ因子とは、細胞を誘電体粒子としてみなして電界中での分極状態を示す指標となる因子である。そのため誘電泳動力によりこの値が正の場合に細胞は電界強度の強い領域に移動する正の誘電泳動が生じ、逆に負の場合は弱い領域に移動する負の誘電泳動が生じる。100mS/m程度の導電率を達成するためには、ほぼ同じ導電率の培養液(YE培地の場合95mS/m)をそのまま用いることが可能であるため、有利である。また、このような条件においては、細孔や電極を含む流路全体に細胞吸着防止剤、例えば、日産化学製、prevelex LS1004等を塗布することが好ましい。

【0035】
前述のようにして調製した細胞懸濁液を、先に説明した分離回収装置のセル10に注入する。試料溶液は、セルのサイズに対してスポットの直径がなるべく小さくなるように、0.1~10μl程度を採取して、セルに注入することができる。サンプルの量は、0.5~3μlとすることがさらに好ましい。また、このような少ない量のサンプルであれば、生死細胞の分離に加え、生死判定も正確に行うことができる。

【0036】
次いで、一対の電極に、死細胞もしくは生細胞を選択的に前記微細孔内に吸引する所定の周波数を印加する工程を実施する。本明細書において、このような周波数を、「吸引周波数」とも指称する。吸引周波数とは、死細胞もしくは生細胞の一方のみが正もしくは負の誘電泳動を行って微細孔に吸引され、死細胞もしくは生細胞の他方は逆の誘電泳動を行って、反発力で微細孔から弾かれる周波数である。生細胞と死細胞は、周波数及び外部導電率の条件を適切に設定することで、互いに逆の誘電泳動を誘導できることが知られている。本発明は、この原理に基づき、死細胞もしくは生細胞の一方のみを選択的に正の誘電泳動を発生させ、微細孔絶縁膜3の微細孔31に導き、微細孔31内に吸引保持させ、逆に他方の細胞に負の誘電泳動を発生させることで微細孔31から退けることで細胞を分離する。なお、吸引されて微細孔内にある死細胞もしくは生細胞を選択的に前記微細孔から吐出する周波数を、本明細書において、「吐出周波数」ともいう。吐出周波数については、第2実施形態にて詳述する。

【0037】
上記の吸引周波数及び外部導電率は、事前実験により求めることができる。あるいは、クラウジウス-モソッティ因子と周波数との関係を求める理論計算により得ることができる。特定の外部導電率に対し、好適な周波数を事前実験もしくは理論計算により得ることが好ましい。例えば、分離対象細胞が、分裂酵母もしくは出芽酵母の場合、外部導電率が20mS/mの場合に、生細胞7を選択的に微細孔31に導くことができる好適な吸引周波数は15~50MHzとすることができ、死細胞6を選択的に微細孔31に導くことができる好適な吸引周波数は10~60kHzとすることができる。同様に、外部導電率が50mS/mの場合、生細胞の好適な吸引周波数は20~50MHzとすることができ、死細胞の好適な吸引周波数は50~250kHzとすることができる。外部導電率が100~1000mS/mの場合に、生細胞の好適な吸引周波数は、0.5~300MHz程度とすることができ、さらに好ましくは0.5~50MHzとすることができる。一方、このとき死細胞は全ての周波数で吸引されない。

【0038】
吸引周波数を印加した後は、当該周波数を維持することで、微細孔31に導いた細胞を微細孔31内に保持することができる。本発明においては、所定の微細孔絶縁膜3を用いることで、微細孔内に吸引した細胞を強固に保持できる点で、従来技術と比較して有利である。また、微細孔31内に細胞を吸引した状態で周波数を切り換えるか又は外部導電率を変えるかで、細胞を微細孔31内から吐出することができる。このため、例えば、生細胞7を分離、回収したい場合に、正の誘電泳動を発生させて生細胞7を微細孔31内に吸引した後、吸引状態のままで細胞懸濁液を入れ換え、次いで負の誘電泳動を発生することにより、入れ換えた液中に生細胞7を吐出させて、生細胞7のみを選択的に回収することができる。具体的には、外部導電率20mS/mの場合、20MHzを、外部導電率100mS/mの場合、1MHzを、外部導電率1000mS/mの場合、10MHzを、それぞれ印加することで、生細胞7を微細孔31内に吸引し、その状態で同じ外部導電率の液を入れ換えて、50kHzを印加すれば、生細胞7を吐出することができる。または同じ周波数を印加したままで外部導電率1.5mS/m以上の液に入れ換えれば、生細胞7を吐出させることができる。一方、外部導電率20mS/mの場合、死細胞6は、50kHzで吸引し、50MHzで吐出することができる。別の実施形態においては、先に不要な細胞を吸引する操作を行い、その後に、上層に浮遊している細胞を回収することも可能である。この場合、図示はしないが、セルに注入口、排出口を設け、フローセルとすることで、処理量を増すこともできる。これらの実施形態によれば、細胞の選択的な分離を実施することができる。

【0039】
本実施形態に係る細胞の分離回収装置及び方法によれば、細胞サイズ程度の微細孔径を備える微細孔絶縁膜を用いることで、細胞に働く正又は負の誘電泳動力の違いで細胞を微細孔内に吸引し、または微細孔外に反発させることができ、従来技術と比較して、分離精度が高く、かつ細胞の微細孔内への保持力も大きくなった。

【0040】
[第2実施形態]
本発明の第2実施形態による、細胞の分離回収装置を図2に示す。第2実施形態による細胞の分離回収装置は、主として、セル30と、交流発振器20とから構成される。

【0041】
第2実施形態による、細胞の分離回収装置は、セル30中のガラス基板1a、1b、電極2a、2b及びスペーサ5の構成、並びに交流発振器20については、第1実施形態と同様である。第2実施形態においては、セル30内の上層領域Aに細胞懸濁液5を注入する注入口8と排出口9とを備える点、及び微細孔絶縁膜3の設置態様において第1実施形態と異なっている。

【0042】
本実施形態において、微細孔絶縁膜3は、両電極2a、2bから離間して、セル30内部の空間を、電極2aと接する上層領域Aと、電極2bと接する下層領域Bとに二分割するように設けられている点で相違する。微細孔絶縁膜3の仕様は第1実施形態において説明したのと同様であってよいが、微細孔31は、微細孔絶縁膜3を貫通して設けられていることが必要である。また、上層領域Aと、下層領域Bとは、微細孔絶縁膜3に設けられた複数の微細孔31を介してのみ物質の流通が可能に構成されている。微細孔絶縁膜3の設けられる位置は、図示するように中央部付近であってもよく、他の箇所であってもよい。

【0043】
注入口8及び排出口9は、上層領域Aに細胞懸濁液5を注入可能な態様で設けられている。図示する実施形態においては、ガラス基板1a及び電極2aを貫通する態様で注入口8及び排出口9が設けられているが、スペーサを貫通する態様で設けられてもよい。注入口8及び排出口9は、セル30内への細胞懸濁液5の連続的な注入、排出を可能にし、大量処理を可能とする。なお、図示はしないが、下層領域Bにも同様に、任意の形態で、注入口、排出口が設けられていてもよい。

【0044】
本実施形態による細胞の分離回収装置においては、微細孔絶縁膜3で区切られた一方の領域から細胞を微細孔31に吸入し、微細孔31から細胞を他方の領域に吐出することを意図して、微細孔31の形状を様々な態様とすることができる。図2における一つの微細孔31部分Pの模式的な拡大図を、図10、12、14~18に示し、各微細孔の態様について説明する。

【0045】
第1態様による円筒形状の微細孔をもつ微細孔絶縁膜の一例を図10に示す。円筒形状の微細孔については、第1実施形態において詳述したとおりである。図10に示す微細孔絶縁膜3aは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φと同一の微細孔31aを備えている。このような円筒形の微細孔31a内においては、細孔内にほぼ均一な高電界を発生させることができる。

【0046】
第2態様においては、微細孔31の形状は、微細孔絶縁膜3の厚さ方向に沿って孔径が変化する態様であってもよい。厚さ方向に沿って孔径が変化する態様としては、例えば、微細孔絶縁膜3の一方の面に位置する吸引口iから、他方の面に位置する吐出口oに向かって孔径が連続的に増加する円錐台型であってよい。円錐台型の微細孔をもつ微細孔絶縁膜の一例を図12に示す。図12に示す微細孔絶縁膜3bは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φよりも小さい微細孔31bを備えている。このような円錐台型の微細孔31b内においては、吸引口iと吐出口oとの孔径の差が大きいほど、吸引口i付近の電界強度が、吐出口oの電界強度に対して大きい不均一電界が形成される。なお、孔内のいずれの場所における電界強度も、孔外の電界強度より大きくなる。

【0047】
第3態様においては、微細孔31の形状は、微細孔絶縁膜3の一方の面に位置する吸引口iから、他方の面に位置する吐出口oに向かって孔径が段階的に増加する階段型であってよい。階段型の微細孔とは、言い換えると、直径の異なる円柱が、直径が減少するもしくは増加する順に複数重なった形状ということもできる。階段型の微細孔をもつ微細孔絶縁膜の一例を図14、図15に示す。図14に示す微細孔絶縁膜3cは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φよりも小さく、孔径が二段階に変化する微細孔31cを備えている。図15に示す微細孔絶縁膜3dは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φよりも小さく、孔径が三段階に変化する微細孔31dを備えている。図14、15のいずれの態様でも、孔径が拡がるにつれて微細孔内31c、d部の電界強度は小さくなり、吸引口i付近の電界強度が、吐出口oの電界強度に対して大きい不均一電界が形成される。なお、微細孔31c、dのいずれの場所における電界強度も、微細孔31c、d外の電界強度より大きくなる。なお、階段型の段数は特定の数には限定されない。

【0048】
第4態様においては、微細孔31の形状は、微細孔絶縁膜3の一方の面に位置する吸引口iから、膜の厚さ方向の中央部に向けて孔径が連続的に減少し、中央部から微細孔絶縁膜3の他方の面に位置する吐出口oに向けて孔径が連続的に増加する鼓型であってもよい。鼓型の微細孔とは、言い換えると、上面の直径が同一の2つの円錐台型を、上面どうしが接触するように重ねた形状ということができる。鼓型の微細孔をもつ微細孔絶縁膜の一例を図16に示す。図16に示す微細孔絶縁膜3eは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φと同一であり、膜の厚さ方向の中央部に孔径が極小となる部分がある微細孔31eを備えている。図16に示す微細孔31e内では、吸引口i近傍と吐出口o近傍とがほぼ同一の電界強度であり、孔径が極小となる部分において最大の電界強度をもつ不均一電界が形成される。なお、微細孔31e内のいずれの場所における電界強度も、微細孔31e外の電界強度より大きくなる。

【0049】
第5態様においては、微細孔31の形状は、微細孔絶縁膜3の一方の面に位置する吸引口iから、膜の厚さ方向の中央部に向けて孔径が段階的に減少し、中央部から微細孔絶縁膜3の他方の面に位置する吐出口oに向けて孔径が段階的に増加する、糸巻型であってもよい。糸巻型の微細孔をもつ微細孔絶縁膜の一例を図17に示す。図17に示す微細孔絶縁膜3fは、吸引口iとなる一方の面に位置する孔径φと、吐出口oとなる他方の孔径φとが同一で、膜の厚さ方向の中央部にこれらよりも小さい孔径となる部分を持つ微細孔31fを備えている。このような微細孔31f内における不均一電界は、第4態様と概ね同じであり、吸引口i近傍と吐出口o近傍とがほぼ同一の電界強度であり、孔径が小さい部分において最大の電界強度をもつ不均一電界が形成される。なお、微細孔31f内のいずれの場所における電界強度も、微細孔31f外の電界強度より大きくなる。

【0050】
第6態様においては、微細孔31の形状は、微細孔絶縁膜3の一方の面に位置する吸引口iから、膜の厚さ方向の中央部に向けて孔径が連続的に増加し、中央部から微細孔絶縁膜3の他方の面に位置する吐出口oに向けて孔径が連続的に減少する壺型であってもよい。壺型の微細孔とは、言い換えると、下面の直径が同一の2つの円錐台型を、下面どうしが接触するように重ねた形状ということができる。壺型の微細孔をもつ微細孔絶縁膜の一例を図18に示す。図18に示す微細孔絶縁膜3gは、吸引口iとなる一方の面に位置する孔径φが、吐出口oとなる他方の孔径φと同一であり、膜の厚さ方向の中央部に孔径が極大となる部分がある微細孔31gを備えている。図18に示す微細孔31g内では、吸引口iと吐出口oとがほぼ同一の電界強度であり、孔径が極小となる部分において最小の電界強度をもつ不均一電界が形成される。なお、微細孔31g内のいずれの場所における電界強度も、微細孔31g外の電界強度より大きくなる。

【0051】
このように、微細孔内に不均一電界が形成されやすい、非円筒形状の微細孔を備える微細孔絶縁膜は、細胞に対して、吸引周波数を印加し正の誘電泳動をさせることにより、電界強度の弱い孔外から、電界強度の強い孔内に吸引することができる。細胞が孔内に吸引された後、吐出周波数を印加し負の誘電泳動により、電界強度がより弱い吐出口oへ向けて移動させ、孔外へ吐出させることができる。

【0052】
第2実施形態による、細胞の分離回収装置は、ある態様においては、絶縁性極薄フィルムを用いて作製することができる。絶縁性極薄フィルムとは、厚さが極めて薄い、例えば10μm以下程度のフィルムである。絶縁性であればその組成は特には限定されないが、一例としては、厚さが5μm程度のポリイミドなどが挙げられる。このような絶縁性極薄フィルムと、厚さが20μm程度であって、200μm程度の幅を持つ流路が形成された流路用フィルム、微細孔絶縁膜(微細孔膜フィルタ)を使用して本実施形態によるセルを形成することができる。これらを、絶縁性極薄フィルム/流路用フィルム/微細孔絶縁膜/流路用フィルム/絶縁性極薄フィルムの順に重ねてラミネート接着し作製することができる。この積層体(フィルタともいう)の上下、すなわち上下の絶縁性極薄フィルムに接して2枚の平板電極で挟み密着させることでセルを形成することができる。このとき、絶縁性極薄フィルムと底面及び上面の電極とを、水やグリセロールなどの誘電率や粘性が高い液体で隙間無く密着させる必要がある。空気層をなくし、流路内に電圧がかかる構成とするためである。この態様により得られたセルにおいては、積層体内の微細孔絶縁膜の微細孔内に高電界を形成することができ、細胞の吸引、吐出ができる。また、流路用フィルムを用いることで、微細孔絶縁膜を挟んだ上層、下層のそれぞれに、細胞懸濁液の入口と出口を形成することができる利点もある。本態様においては、病原菌などを含んだ細胞懸濁液は電極と直接接触しないので、電極部分は再利用できフィルタはそのまま使い捨てが可能となる。

【0053】
第2実施形態による、細胞の分離回収装置は、別の態様においては、水平方向にひとつづきとなる微細孔絶縁膜のある領域と、他の領域とで微細孔の孔径が異なる。微細孔の孔径が異なるとは、円筒型微細孔の場合には、直径が異なることをいい、非円筒型微細孔の場合は、吸引口iの径が異なることをいう。このような異なる微細孔径は、分離対象とする細胞の径に応じて当業者が適宜決定することができる。なお、孔径が異なる微細孔であれば、微細孔の形状は同一でも異なっていてもよい。また、微細孔絶縁膜により区切られる下層において、上記微細孔の孔径が異なる複数の領域が、細胞の移動が不可能な壁により区切られている。図31に、このような態様のセルを模式的に示す。図31に示すセルにおいては、微細孔絶縁膜3hが、相対的に大きい微細孔31hを持つ領域と、相対的に小さい微細孔31hを持つ領域とに分かれている。そして、微細孔絶縁膜3hにより鉛直方向に区切られたセルの下層にはスペーサ4bが設けられ、スペーサ4bを境界として大きい微細孔31hを持つ領域の下層領域B1と、小さい微細孔31hを持つ領域の下層領域B2とに水平方向に区切られている。また、下層領域B1、B2には、それぞれ排出口9が設けられている。微細孔絶縁膜3hの上層領域Aの構成は、図2に示す実施形態と同様とすることができる。本態様にかかるセルにおいては、微細孔絶縁膜の水平方向に、孔径が異なる領域を設けることで、細胞の大きさに特異的に細胞を分離することが可能となる。

【0054】
第2実施形態による細胞の分離回収装置を用いた場合の分離回収方法も、第1実施形態において説明したのと概ね同様に実施することができる。図2を参照すると、第2実施形態においては、吸引周波数を印加することにより、死細胞6もしくは生細胞7のいずれかを、微細孔31を通過させて下層領域Bへ選択的に移動させることで細胞を分離する。例えば、酵母細胞を分離するために、微細孔径が5~10μmの微細孔絶縁膜3を用いることができる。そして、細胞懸濁液5の導電率を40~60mS/mとし、40~60kHzの吸引周波数を印加することができる。死細胞6は正の誘電泳動により微細孔31に吸引され、下層領域Bへ落下する場合がある。一方、同条件において、生細胞7は負の誘電泳動により微細孔31から反発し、上層領域Aに留まる。下層領域Bへ落下した死細胞6は、吸引周波数を印加した条件下、あるいは周波数を印加しない条件下で再度微細孔31を通過して上層領域Aに戻ることはないため、死細胞6のみを選択的に下層領域Bに分離することができる。特に、微細孔径が10μm程度の微細孔絶縁膜3を用いた場合、微細孔内における細胞の保持が緩めになるため、流速によって下層領域Bへ自由落下しやすくなる。また、吸引周波数から約1kHzの吐出周波数へ切り換えることにより、生細胞と死細胞の両方に負の誘電泳動を発生させることができ、まだ吸引保持で残っている細胞を能動的に下層領域Bに吐出させることができる。これを繰り返すことで目詰まりを防止し、目的の細胞を連続的に吸引吐出し上層領域Aから下層領域Bへ移動させ処理量を増やすことができる。

【0055】
あるいは、生細胞を上層領域Aから吸引し、下層領域Bに吐出して回収する場合には、細胞懸濁液の導電率は、70~1200mS/mであることが好ましい。このような導電率の範囲であれば、生細胞のクラウジウス-モソッティ因子が正となる吸引周波数範囲(0.3~300MHz)で正の誘電泳動力が発生し吸引される。そして、次にクラウジウス-モソッティ因子が負となる吐出周波数範囲に切り換えることで負の誘電泳動力が発生し生細胞を孔外に吐出することができる。細胞懸濁液の導電率が70~1200mS/mの範囲において、死細胞は全ての周波数範囲でクラウジウス-モソッティ因子が負となる。したがって、負の誘電泳動を生じるため、細孔内に吸引されることはない。

【0056】
さらに、第2実施形態の一態様である図31に示す態様によれば、上記と同様に吸引周波数及び吐出周波数を切り替えることができるが、相対的に大きい生細胞7aと、相対的に小さい生細胞7bとを、それぞれ選択的に、死細胞6a、bから分離し、回収することができる点で、さらなる精確な分離が可能となる。

【0057】
第2実施形態による細胞の分離回収装置、方法によれば、微細孔絶縁膜の通過による連続的な細胞分離が可能になるため、大量処理が可能となる点でより有利である。特には、微細孔内部の形状を加工することで、吸引口から吐出口へかけて電界強度を変化させ、この細孔内の不均一電界と印加周波数の切り換えにより、正または負の誘電泳動を発生させて、生細胞または死細胞のどちらかを能動的に微細孔内を通過させることで、細胞の分離が可能となる。

【0058】
[第3実施形態]
本発明の第3実施形態による、細胞の分離回収装置は、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備え、前記対向して設けられる導電性層の少なくとも一方が、前記微細孔絶縁膜を被覆する導電性被覆層である。

【0059】
本実施形態の一態様においては、第1、第2実施形態と異なり、セルの上面電極が存在せず、これに代えて微細孔絶縁膜の上面(底面に対向する面とは逆側の面)に導電性被覆層を備える。図19は、本実施形態によるセル断面の部分概念図である。図19に示すセルにおいては、底面に底面電極2bが設けられ、細胞懸濁液を満たす間隙部を隔てて、円錐台型の細孔31bを有する微細孔絶縁膜3bが設けられる。また、微細孔絶縁膜3bの上面は、導電性被覆層11で被覆される。交流発振器20は、底面電極2bと導電性被覆層11の間に周波数を印加することができるように配置される。導電性被覆層11の上方には、細胞懸濁液を満たす部分が設けられればよく、その上方に、セルの上面が設けられてもよく、上面が存在しない開放系のセルであってもよい。セルの上面は、ガラス等であってよいが、特には限定されない。なお、微細孔絶縁膜3bの細孔の形状は、図示する態様には限定されず、第2実施形態において説明した任意の態様であって良い。図示はしないが、底面電極が存在せず、上面電極は存在し、微細孔絶縁膜の下面(底面に対向する面)のみに導電性被覆層を備える態様であってもよい。この場合、微細孔絶縁膜の下方に漏斗状の細胞濃縮部位を設けたセルとすることもできる。そして、当該部位に細胞を移動させることができ、微少な細胞数での観察及び回収が容易になる。

【0060】
導電性被覆層11は、金属層や導電性ポリマー層であればよい。その厚さは特には限定されないが、0.01~5μm程度であってよい。なお、微細孔絶縁膜3bの微細孔内壁部には導電性被覆層を設けないことが好ましい。図20に示すセルのように微細孔内壁部に導電性被覆層を設けると、微細孔内部に不均一電界を生じさせにくく、細胞の吸引が難しくなるためである。

【0061】
本実施形態の別の態様においては、セルの上面電極も底面電極も存在せず、対向して設けられる導電性層の両方が、微細孔絶縁膜を被覆する導電性被覆層であってもよい。図22に示すセルにおいては、円錐台型の細孔31bを有する微細孔絶縁膜3bが設けられ、微細孔絶縁膜3bの上面は導電性被覆層11aで、下面は導電性被覆層11bで被覆される。交流発振器20は、導電性被覆層11a、b間に周波数を印加することができるように配置される。導電性被覆層11aの上方には、細胞懸濁液を満たす部分が設けられればよく、その上方に、セルの上面が設けられてもよく、上面が存在しない開放系のセルであってもよい。導電性被覆層11bの下方には、図示しない底面との間に細胞懸濁液を満たす部分が設けられればよい。なお、本態様においても、微細孔内壁部には導電性被覆層を設けない。また、微細孔絶縁膜の下方に漏斗状の細胞濃縮部位を設ける構成とすることもできる。

【0062】
なお、本実施形態のいずれの導電性被覆層も、その細胞懸濁液に接する面に、絶縁被覆層を形成することができる。絶縁被覆層を形成しても微細孔内に電界形成は可能であり、細胞懸濁液の電気分解を防止したり、導電性被覆層への細胞吸着を防止したりすることができる。絶縁被覆層の仕様は、後述する第4実施形態の絶縁性被覆層3と同様とすることができる。

【0063】
本実施形態によれば、上面電極及び/または底面電極を設置することなく、微細孔絶縁膜3bに被覆した導電性被覆層11と底面電極または上面電極に対する周波数印加により、あるいは、導電性被覆層11a、b間に対する周波数印加により、細胞に誘電泳動力を与えることができる。このため、上面を密閉しない開放系のセルとすることができ、細胞懸濁液の注入がより簡便になる。

【0064】
[第4実施形態]
本発明の第4実施形態による細胞の分離回収装置は、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備え、前記対向して設けられる導電性層の一方が、前記セルの底面もしくは上面を構成する電極であり、前記対向して設けられる導電性層の他方及び前記微細孔薄膜が、前記電極と離間して設けられる、絶縁性被覆層で被覆された導電性網もしくは篩である。

【0065】
本実施形態においては、第1、第2実施形態と異なり、セルの上面電極または底面電極のどちらかが存在しない。また、微細孔薄膜は、その表面全体が絶縁性被覆層で被覆された導電性網もしくは篩である。すなわち、微細孔薄膜が、細胞を通過させて分離させる役割と、周波数を印加する電極としての役割の両者を担う。図23は、本実施形態によるセル断面の部分概念図である。図23に示すセルにおいては、セル上面に上面電極2aが設けられ、細胞懸濁液を満たす間隙部を隔てて、導電性網もしくは篩12が設けられている。導電性網もしくは篩12の表面全体、すなわち、細胞懸濁液と接し得る全ての面には、絶縁性被覆層3aが設けられ、この絶縁性被覆層3aが、微細孔絶縁膜として機能する。図示はしないが、導電性網もしくは篩12の下方には細胞懸濁液を満たす間隙部を隔ててセル底面部が設けられる。底面部は、ガラス等であってよいが、特には限定されない。交流発振器20は、上面電極2aと導電性網もしくは篩12との間に周波数を印加することができるように配置される。なお、図23に示す実施形態に代えて、上面電極を設けず、底面電極を設けて、底面電極と導電性網もしくは篩との間に周波数を印加する態様とすることもできる。

【0066】
導電性網もしくは篩12は、金属あるいは導電性高分子で構成された平板網または篩であってよく、マイクロメーターオーダーの任意の目の大きさをもつマイクロシーブを用いることができるが、これらには限定されない。網もしくは篩の目の大きさは、その表面に所定の厚さの絶縁性被覆層3aを形成した後の細孔が、第1、第2実施形態により説明した好ましい細孔の大きさとなるように適宜選択することができる。また、導電性網もしくは篩の表面に設ける絶縁性被覆層3aは、ポリイミドや、シリコーン樹脂、アルミやシリコンなどの酸化薄膜、ポリジメチルシロキサン、エポキシ樹脂フォトレジストであってよい。絶縁性被覆層3aの厚さは、例えば、0.1~5μm程度であってよく、導電性網もしくは篩の全表面にわたって、均一な厚さで設けられていてもよく、部分的に異なる厚さであってもよい。本実施形態の構成とすることにより、精密加工などで微細で精度の高い細孔の製造が可能であり、耐熱性や薄く機械的強度が得られやすいといった利点がある。

【0067】
[第5実施形態]
本発明の第5実施形態による細胞の分離回収装置は、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備え、前記対向して設けられる導電性層の少なくとも一方が、導電性網もしくは篩であり、前記微細孔薄膜が、前記導電性網もしくは篩と離間してまたは接触して設けられた微細孔絶縁膜である。

【0068】
本実施形態においては、第1、第2実施形態と異なり、セルの上面電極が存在せず、これに代えて、導電性網もしくは篩を用いる。図24は、本実施形態によるセル断面の部分概念図である。図24に示すセルにおいては、底面に底面電極2bが設けられ、細胞懸濁液を満たす間隙部を隔てて、円錐台型の細孔31bを有する微細孔絶縁膜3bが設けられている。微細孔絶縁膜3bの上方には、細胞懸濁液を満たす間隙部を隔てて、導電性網もしくは篩12が設けられる。導電性網もしくは篩12の上方に、セルの上面があってもよく、上面が存在しない開放系のセルであってもよい。この態様のセルの使用に当たっては、篩電極が細胞懸濁液中に完全に浸っている必要がある。篩電極の目の部分を細胞が通過することができる構成とするためである。交流発振器20は、底面電極2bと導電性網もしくは篩12の間に周波数を印加することができるように配置される。微細孔絶縁膜3bの細孔の形状は、図示する態様には限定されず、第2実施形態において説明した任意の態様であって良い。また、図示する態様においては、導電性網もしくは篩12が、微細孔絶縁膜3bとは離間して配置されているが、導電性網もしくは篩12は、微細孔絶縁膜3bと接触して設けられていてもよい。導電性網もしくは篩12と微細孔絶縁膜3bとが接触する場合、後述する実施例にて検証する図19に示した態様と同様の電界強度分布となり、好適な不均一電界が形成される。

【0069】
さらに、本実施形態による装置は、上面電極も底面電極も存在せず、対向して設けられる2つの導電性網もしくは篩の間に、微細孔薄膜を備えるものであってもよい。図25は、本実施形態によるセル断面の部分概念図である。図25に示すセルにおいては、セルの上方及び下方に導電性網もしくは篩12a、bが設けられ、細胞懸濁液を満たす間隙部を隔てて、これらの間に円錐台型の細孔31bを有する微細孔絶縁膜3bが設けられている。導電性網もしくは篩12aの上方に、セルの上面があってもよく、上面が存在しない開放系のセルであってもよい。ただし、先と同様の理由で、この態様のセルの使用に当たっては、篩電極が細胞懸濁液中に完全に浸っている必要がある。また、図示はしないが、導電性網もしくは篩12bの下方には細胞懸濁液を満たす間隙部を隔てて底面部が設けられる。交流発振器20は、2つの導電性網もしくは篩12a、b間に周波数を印加することができるように配置される。微細孔絶縁膜3bの細孔の形状は、図示する態様には限定されず、第2実施形態において説明した任意の態様であって良い。さらに、図示する態様においては、導電性網もしくは篩12a、bが、微細孔絶縁膜3bとは離間して配置されているが、導電性網もしくは篩12a、bは、その一方が、あるいは両者ともに微細孔絶縁膜3bと接触して設けられていてもよい。微細孔絶縁膜3bが導電性網もしくは篩12a、bと接触して挟まれる場合、後述する実施例にて検証する図22に示した態様と同様の電界強度分布となることが理論的に推測される。

【0070】
導電性網もしくは篩12は、金属あるいは導電性高分子で構成された平板網または篩であってよく、マイクロメーターオーダーの任意の目の大きさをもつマイクロシーブを用いることができるが、これらには限定されない。網もしくは篩の目の大きさは、細胞を通過させ、夾雑物を排除する大きさであってよく、例えば、2~300μm程度であってよい。網もしくは篩の厚さは特には限定されないが、10~100μm程度であってよい。上面電極に代えて導電性網もしくは篩を用いることにより、網もしくは篩の目を通過させて細胞懸濁液をセルに注入することができ、開放系のセルとすることができる。また、底面電極に代えて導電性網もしくは篩を用いることにより、微細孔絶縁膜下方の導電性網もしくは篩よりもさらに下部に漏斗状の細胞濃縮部位を設け、当該部位に細胞を移動させることができ、微少な細胞数での観察及び回収が容易になるといった利点が得られる。

【0071】
図32は、漏斗状の細胞濃縮部位を設置するセルを示す概念的な模式図である。図32に示すセルは、セル下方に位置する導電性網もしくは篩12bの下方に、漏斗状の細胞濃縮部位を備えている。そして、細胞濃縮部位の先端部に電極2cが設けられ、かつ先端部近傍に細胞の排出口9が設けられている。電極2cの材質は特に限定されず、第1実施形態において挙げた任意の電極を用いることができるが、ITO等の透明電極を用いることが、観察を可能にする観点からは特に好ましい。本態様に係るセルにおいては、2つの導電性網もしくは篩12a、b間に周波数を印加する第1交流発振器20aと、下方の導電性網もしくは篩12bと、電極2c間に周波数を印加する第2交流発振器20bとを備えている。かかる態様において、濃縮回収のためには第2交流発振器20bには、正の誘電泳動となる周波数を印加することが好ましい。また排出口9から細胞を回収するには負の誘電泳動となる周波数を印加することが好ましい。

【0072】
なお、本実施形態のいずれの導電性網もしくは篩も、細胞懸濁液に接する面に、絶縁被覆層を形成することができる。絶縁被覆層を形成しても微細孔内に電界形成は可能であり、細胞懸濁液の電気分解を防止したり、導電性網もしくは篩への細胞吸着を防止したりすることができる。絶縁被覆層の仕様は、第4実施形態の絶縁性被覆層3と同様とすることができる。

【0073】
[第6実施形態]
本発明の第6実施形態による細胞の分離回収装置は、対向して設けられる2つの導電性層と、前記2つの導電性層間に設けられた1以上の微細孔薄膜とを備えるセルと、前記2つの導電性層間に所定範囲の周波数を印加する交流発振器とを備え、前記対向して設けられる導電性層が前記セルの底面と上面とを構成する電極であり、前記微細孔薄膜が、少なくとも一方の前記電極と離間して、前記電極間に設けられた微細孔絶縁膜であって、前記2つの導電性層間に設けられた1以上の微細孔薄膜が、互いに離間して設けられる2以上の微細孔絶縁膜であって、2以上の微細孔絶縁膜の微細孔径がそれぞれ異なっており、上面に近い微細孔絶縁膜から下面に近い微細孔絶縁膜にかけて、微細孔径が順次小さくなる。

【0074】
本実施形態は、第2実施形態の変形形態であって、対向して設けられる底面及び上面電極の間に、これらの電極のそれぞれと離間し、かつ互いに離間して、2以上の微細孔絶縁膜が設けられることを特徴とする。そして、上面電極に近い微細孔絶縁膜から下面電極に近い微細孔絶縁膜にかけて、微細孔絶縁膜に設けられる微細孔の孔径が順次小さくなる。設けられる微細孔絶縁膜は、2以上であれば、3、4、5、あるいは6以上であってもよく、特には限定されない。2枚の微細孔絶縁膜を用いる態様においては、膜により鉛直方向に三層の領域に、3枚の微細孔絶縁膜を用いる態様においては、膜により鉛直方向に四層の領域にセルを区切ることができる。また、孔の形状も第2実施形態において説明したいずれの形態であってもよく、2以上の微細孔絶縁膜のそれぞれの孔形状が異なっていてもよいが、2以上の微細孔絶縁膜のいずれにおいても、円錐台型の微細孔を設けることが特に好ましい。本実施形態において、微細孔径が順次小さくなるとは、円筒型微細孔の場合は直径が順次小さくなることをいう。一方、非円筒型微細孔の場合には、吸入口の大きさが順次小さくなることをいう。

【0075】
本実施形態によれば、微細孔絶縁膜を2以上設けることで、異なるサイズの細胞を順次分離することも可能となり、より精度の高い細胞分離が可能となる。

【0076】
以下に、本発明を実施例により更に具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。
【実施例】
【0077】
(1)細胞サンプルの調製
分裂酵母(円筒状)及び出芽酵母(雪だるま状)を天然培地で対数増殖期まで培養した後、遠心分離器を用いて蒸留水で洗浄しサンプルとして調製した。死細胞は70℃熱処理により殺菌後、蒸留水で洗浄し調製した。細胞懸濁液の導電率は塩化カリウムで20~100mS/mに調整した。また生細胞と死細胞を見分けるため、生細胞は緑色蛍光を発するSYTO9で、死細胞は赤色蛍光を発するPIで、それぞれ蛍光染色した。
【実施例】
【0078】
(2)実験装置及び実験操作
本実施例においては、顕微鏡による観察ができるように、25×20mmのITO(インジウム-酸化スズ)透明電極を用いてセルを組み立てた。まず50μmの絶縁スペーサで上面および底面電極間の距離を確保した。その隙間の、底面側の電極表面に接するように膜厚20μmのポリカーボネート製微細孔絶縁膜(トラックエッチドメンブレン、メルク製)を敷いて本実施例のセルとした。このセルの、微細孔絶縁膜上に細胞懸濁液1.5μLを注入した(図1)。これを倒立型顕微鏡上に設置し、発振器で交流電圧を印加しながら観察した。
【実施例】
【0079】
(3)孔径サイズに対する微細孔への細胞吸引の違い
交流電圧を印加すると誘電泳動力により膜表面上の分裂酵母細胞が微細孔内に吸引される現象が観察された(図3、4)。また、この現象は、最小2Vで実現可能であった。この電圧は、特許文献1の開示の1/15程度である。ただし孔径が細胞よりもかなり大きい場合には、細孔内側面に複数個が吸着し凝集した(図5)。細胞よりもかなり大きい孔径の絶縁膜を用いた場合には、孔を通過してしまうことがあり、生細胞と死細胞の分離精度は低下した。他の微生物細胞を用いて行った実験でも吸引される微細孔径は、細胞の大きさ(最小径)に対し1~2倍程度であった。表1に、微生物菌種ごとの、微細孔内への導入可否を示す。表中+は、導入可であり、-は導入できなかったことを示す。+-は、球形に近いものは導入され,出芽しているものは入口に引っかかり導入できなかったことを示す。
【実施例】
【0080】
【表1】
JP2019150016A_000003t.gif
【実施例】
【0081】
(4)微細孔内に吸引される生細胞と死細胞の周波数特性の違い
分裂酵母の細胞懸濁液の導電率が20mS/mで、微細孔径サイズ5μmの場合、20MHz印加では生細胞のみ微細孔内に吸引され(図7)、50kHz印加では死細胞のみ微細孔内に吸引されることが分かった(図6)。
【実施例】
【0082】
(5)蛍光染色細胞による生死分離の確認
上記(4)の条件で、生死混合状態の細胞懸濁液から生細胞のみを吸引することができ(図8)、死細胞のみを吸引することができる(図9)ことが蛍光染色により確認できた。
【実施例】
【0083】
(6)微細孔内の電界強度のシミュレーション
次に、第2実施形態による細胞の分離回収装置の構成において、異なる形状の微細孔について、有限要素法によるソフトウェアであるCOMSOL Multiphysicsを用いて細孔内の電界強度のシミュレーションを行った。シミュレーションの条件は以下の表2通りとした。いずれのシミュレーションの条件においても、微細孔絶縁膜と上面電極との間の液部間隙は25μm、微細孔絶縁膜と底面電極との間の液部間隙は25μm、交流10MHz、2Vとした。また、表2中、孔径φの表記は、円筒型については直径を、円錐台型については、吸入口iの直径φ/吐出口oの直径φを、階段型については、吸入口iの直径φ/中間部直径(中間部が存在する3段階の階段型の場合)/吐出口oの直径φを、鼓型については、吸入口iの直径φ/極小部の直径/吐出口oの直径φを、糸巻型については、吸入口iの直径φ/中間部の直径/吐出口oの直径φを、壺型については、吸入口iの直径φ/極小部の直径/吐出口oの直径φを記載するものとする。
【実施例】
【0084】
【表2】
JP2019150016A_000004t.gif
【実施例】
【0085】
円筒型細孔は、図10に模式図にて示されるとおりであり、市販のトラックエッジドメンブレンに相当する形状である。シミュレーション番号1~3の円筒型細孔において、いずれも微細孔内には、ほぼ均一な電界が生じ、その電界強度は、微細孔外である微細孔絶縁膜と上面電極との間の液部、もしくは微細孔絶縁膜と底面電極との間の液部よりも強かった。このことから、円筒型細孔では、液部から細胞を吸引可能ではあるが、吐出は上下両方向へも生じ得ることがわかった。図11は、シミュレーション番号1~3の円筒型微細孔の中心線上の電界強度を示すグラフである。中心線とは、微細孔(円筒)の中心軸をいうものとする。グラフ中、距離(μm)は、底面電極からの距離をいうものとする。図11から、微細孔径が小さいほど微細孔内はほぼ均一で電界強度が強くなることがわかった。また、図示はしないが、微細孔径が大きいほど吸入口i及び吐出口oの端部の電界が集中することもわかった。
【実施例】
【0086】
円錐台型微細孔は、図12に模式図にて示されるとおりである。シミュレーション番号4~6の円錐台型微細孔においては、吸入口iから吐出口oに向けて徐々に電界強度が弱まる不均一電界が形成された。微細孔内の電界強度は、微細孔外である微細孔絶縁膜と上面電極との間の液部、もしくは微細孔絶縁膜と底面電極との間の液部よりも強かった。図13は、シミュレーション番号4~6の円錐台型微細孔の中心線上の電界強度を示すグラフである。吸入口iの孔径φと吐出口oの孔径φとの孔径差が大きいほど電界強度差が大きくなった。円錐台型の微細孔を設けた微細孔絶縁膜では、不均一電界形成により吸引吐出が可能となることがシミュレーションにより推定された。
【実施例】
【0087】
また、円錐台型微細孔を用いた細胞の吸引吐出の検証実験を以下のように行った。円錐台型微細孔の加工は、市販の孔径5μmのポリカーボネート製のアイソポア(メルク社製)を高周波酸素プラズマ装置(プラズマリアクターPR-301、ヤマト科学)で片面を15分間ドライエッチングすることで、吸入口iの孔径φが5μm、吐出口oの孔径φが7μmの微細孔絶縁膜を得ることができた。詳細には、参考文献Anal Chem,76,2025-2030,2004に開示された条件で行った。
【実施例】
【0088】
第1実施形態(図1)に基づく25×20mmのITO透明電極2枚を用いてセルを組み立てた。まず100μmの絶縁スペーサで上面および底面電極間の距離を確保した。その隙間の、底面側の電極表面に接するように厚さ23μmの円錐台型微細孔絶縁膜を敷いて本実施例のセルとした。このセルの、微細孔絶縁膜上に細胞懸濁液1μLを注入した。これを倒立型顕微鏡上に設置し、交流発振器で10kHzから10MHzまでの周波数を電圧4Vで印加しながら観察した。細胞懸濁液は分裂酵母細胞をYE培地(95mS/m)で1×10cells/mLとなるよう懸濁し調製した。
【実施例】
【0089】
吸引の検証実験の場合は吸引口iを上側に設置し細胞が吸引される割合を、吐出の場合は吐出口oを上側に設置し一度1MHz印加し吸引された細胞が吐出される割合を測定した。図28に生細胞の印加周波数に対する吸引率と吐出率を示す。500kHz以上で正の誘電泳動により吸引され1MHzで最も吸引率が高かった。一方、吸引された細胞は500kHz以下で負の誘電泳動により吐出され50kHzで最も吐出率が高かった。また、死細胞では全ての周波数で細孔内への吸引自体が生じなかった。これらの実験結果は図27に示すクラウジウス-モソッティ因子の実部の正負とほぼ一致することが確認された。
【実施例】
【0090】
階段型微細孔は、図14、15に模式図にて示されるとおりである。シミュレーション番号7、8の階段型微細孔においては、吸入口iから吐出口oに向けて段階的に電界強度が弱まる不均一電界が形成された。微細孔径が同一の部分においては、ほぼ均一の電界が生じた。また、微細孔内の電界強度は、微細孔外である微細孔絶縁膜と上面電極との間の液部、もしくは微細孔絶縁膜と底面電極との間の液部よりも強かった。図29は、シミュレーション番号7~11の階段型、鼓型、糸巻型、壺型の微細孔の中心線上の電界強度を示すグラフである。中心線、及び距離(μm)の定義は、先の図11と同様である。階段型微細孔においても、不均一電界を形成することができたため、円錐台型微細孔と同様に吸引吐出すると推定される。
【実施例】
【0091】
鼓型微細孔は、図16に模式図にて示されるとおりである。図29を参照すると、シミュレーション番号9の鼓型微細孔においては、吸入口iから、孔径が極小となる部分(孔径極小部と指称する)に向けて電界強度が強まり、また孔径極小部から吐出口oに向けて電界強度が弱まる不均一電界が形成される。鼓型微細孔では、微細孔絶縁膜の中央部にある孔径極小部の電界強度が強い。しかし、微細孔内に吸引され、孔径極小部まで到達した細胞は、これ以降は、円錐台型微細孔に準ずる電界の影響を受け、円錐台型微細孔と同様に吸引吐出されると推定される。
【実施例】
【0092】
糸巻型微細孔は、図17に模式図にて示されるとおりである。図29を参照すると、シミュレーション番号10の糸巻型微細孔においては、吸入口i、吐出口o近傍部分の電界強度よりも、中間部の直径が小さい部分の電界強度が強かった。微細孔内のいずれの部分の電界強度も、微細孔外である微細孔絶縁膜と上面電極との間の液部、もしくは微細孔絶縁膜と底面電極との間の液部よりも強かった。糸巻型微細孔における電界強度の分布傾向は、鼓型微細孔に準じており、細胞の吸引吐出も鼓型微細孔と同様に可能であると推定される。
【実施例】
【0093】
壺型細孔は、図18に模式図にて示されるとおりである。図29を参照すると、シミュレーション番号11の壺型細孔においては、吸入口i、吐出口o近傍部分の電界強度が、中間部の直径が極大になる部分の電界強度よりも強かった。したがって、所定の周波数を印加することにより、細胞が吸入口iから吸引され、下方へ移動し、吐出口oから吐出されると推定される。
【実施例】
【0094】
シミュレーション番号12~14では、円錐台型の微細孔について、微細孔絶縁膜の膜厚の影響を検討した。その結果、微細孔絶縁膜が厚くなるほど微細孔内の電界強度は低下するが、円錐台型であれば微細孔内に不均一電界は形成されることが示された。ただし、微細孔絶縁膜の膜厚が細胞径に近ければ、負の誘電泳動による吐出が迅速であると推定される。また、微細孔内での細胞の移動距離が長い、すなわち微細孔絶縁膜の膜厚が厚すぎると、細胞が吐出口oから吐出される前に再び正の誘電泳動で吸入口i側に吸引されるリスクが生じることが予測される。
【実施例】
【0095】
(7)微細孔絶縁膜表面への導体皮膜コート
吸入口iの孔径φが5μmで吐出口oの孔径φが10μmの円錐台型の細孔をもつ、厚さ25μmの微細孔絶縁膜の吸入口iの位置する面を金で薄膜コートした。金薄膜のコート厚さは、100nm程度とした。図19に模式図を示す。セル構成は、上面電極を設けることなく、上面電極として機能する金薄膜11と平板底面電極2bとの間に交流発振器20を接続し、交流電圧を印加可能な態様とした。このセルに上部から細胞懸濁液を注入し、交流10MHz、2Vを印加すると、微細孔内に、吸入口i付近の電界強度が強く、吐出口oに向けて電界強度が弱くなる吸引吐出可能な不均一電界が形成された。この実施形態では、上面電極に代えて、微細孔絶縁膜の上面に導体皮膜を設けることで、上部を密閉せずに開放系として細胞懸濁液を注入することができた。しかし、この態様では、吸入口i上部付近の電界が弱いため吸引能力は低下した。図30は、先の実施例と同様のシミュレーション条件にて、図19~図23に示す態様の微細孔の中心線上の電界強度をシミュレーションした結果を示すグラフである。図30中、「上面導体皮膜」は、図19に示す実施例の円錐台型微細孔の中心線上の電界強度を示すグラフである。中心線、及び距離(μm)の定義は、先の図11と同様である。
【実施例】
【0096】
同様の円錐台型の細孔をもつ、厚さ25μmの微細孔絶縁膜の吸入口iの位置する面、及び微細孔の内壁面を金で薄膜コートした。図20に模式図を示す。同様にして、円錐台型の細孔をもつ、厚さ25μmの微細孔絶縁膜の吐出口oの位置する面を金で薄膜コートした。図21に模式図を示す。図20、21のいずれの態様においても、金薄膜のコート厚さは、上記図19に示す態様と同様とした。そして、図20、21の態様においては、上面電極を設けることなく、上面電極として機能する金薄膜11と平板底面電極2bとの間に交流発振器20を接続し、交流電圧を印加可能な態様としたセルを組み立てた。しかし、これらのセル構成では、交流電圧を印加しても、吸入口i付近に吸引可能な強い電界は形成されなかった。図30中、「上面孔導体皮膜」は図20に示す実施例の、「下面導体皮膜」は図21に示す実施例の円錐台型微細孔の中心線上の電界強度を示すグラフである。
【実施例】
【0097】
同様にして、円錐台型の細孔をもつ、厚さ25μmの微細孔絶縁膜の吸入口iの位置する面、及び吐出口oのある面を金で薄膜コートした。図22に模式図を示す。図22の態様においても、金薄膜のコート厚さは、上記図19に示す態様と同様とした。そして、図22の態様においては、上面電極も底面電極も設けることなく、上面電極として機能する微細孔絶縁膜の上面に設けられた金薄膜11aと底面電極として機能する微細孔絶縁膜の下面に設けられた金薄膜11b間に交流発振器20を接続し、交流電圧を印加可能な態様としたセルを組み立てた。このセル構成では、微細孔内に吸引吐出可能な不均一電界が形成された。図30中、「両面導体皮膜」は図22に示す実施例の円錐台型微細孔の中心線上の電界強度を示すグラフである。
【実施例】
【0098】
(8)導体性膜フィルタ表面への絶縁皮膜コート
孔径が5μmの円筒型の微細孔をもつ、厚さ23μmの金属製篩板(マイクロシーブ)の全表面を電気絶縁性のシリコーン樹脂で被膜した。シリコーン樹脂の被覆厚さは、1μm程度とした。図23に模式図を示す。セル構成は、底面電極を設けることなく、上面に配置した電極2aと、金属製篩板12との間に交流発振器20を接続し、交流電圧を印加可能な態様とした。本態様では、金属製篩板12にコートされた絶縁皮膜3aが微細孔絶縁膜として機能する。このセルに上部から細胞懸濁液を注入し、交流10MHz、2Vを印加すると、円筒型の微細孔内31aに、吸入口i付近の電界強度が強く、吐出口oに向けて電界強度が弱くなる不均一電界が形成された。図30中、「導体絶縁皮膜」は図23に示す実施例の円筒型微細孔の中心線上の電界強度を示すグラフである。
【実施例】
【0099】
(9)電極として金属製平板篩を使用
上面電極を用いることなくマイクロサイズの隙間をもつ金属製平板篩(金属マイクロシーブ)を用いる実施例について検討した。図24に模式図を示す。この金属製平板篩12とITOからなる底面電極2bとの間に交流発振器20を接続し、交流電圧を印加可能な態様としたセルを作製した。このセルにおいては、吸入口iの孔径φが5μm、吐出口oの孔径φが10μmの円錐台型の微細孔31bをもつ、厚さ25μmの微細孔絶縁膜を、金属製平板篩と底面電極との間に設けた。このセルに上部から細胞懸濁液を注入し、交流10MHz、2Vを印加すると、円錐台型の微細孔内に、吸入口i付近の電界強度が強く、吐出口oに向けて電界強度が弱くなる吸引吐出可能な不均一電界が形成された。なお、篩12の位置は液面よりも低くなるように細胞懸濁液を注入することが重要である。液面と同じ位置だと表面張力により細胞が篩の隙間に留まるため落下しない。また、金属製平板篩12の隙間及び周辺に顕著な不均一電界は形成されなかった。これは、篩12の隙間には誘電泳動による細胞の捕捉は生じないので、細胞は篩12の隙間を通過して落下できることを示す。
【実施例】
【0100】
上面電極も、底面電極も用いることなく、これらに代えてマイクロサイズの隙間をもつ2枚の金属製平板篩を用いる実施例について検討した。図25に模式図を示す。上面電極として機能するセル上方に設けた金属製平板篩12aと、底面電極と同等に機能するセル下方に設けた金属製平板篩12bの間に交流発振器20を接続し、交流電圧を印加可能な態様としたセルを作製した。このセルにおいては、吸入口iの孔径φが5μm、吐出口oの孔径φが10μmの円錐台型の微細孔31bをもつ厚さ25μmの微細孔絶縁膜3bを、2枚の金属製平板篩12a、bの間に設けた。このセルに上部から細胞懸濁液を注入し、交流10MHz、2Vを印加すると、円錐台型の微細孔31b内に、吸入口i付近の電界強度が強く、吐出口oに向けて電界強度が弱くなる不均一電界が形成された。図24に示す実施例と同様に、篩12の位置は液面よりも低くなるように細胞懸濁液を注入する必要がある。また、金属製平板篩12a、bのそれぞれの隙間及び周辺に顕著な不均一電界は形成されなかった。これは、篩12a、bの隙間には誘電泳動による細胞の捕捉は生じないので、細胞は篩12a、bの隙間を通過可能であることを示す。
【実施例】
【0101】
図24、25に示す実施例では、細胞懸濁液を上部から注入することができ(開放系)、細胞は金属製平板篩の金属部分に捕捉されることなく隙間を通過して微細孔絶縁膜まで容易に到達し、微細孔内に吸引された。特には、金属製平板篩として、東京プロセスサービス製マイクロシーブ(メッシュ線数114L/inch、メッシュピッチ223μm、開口幅196μm、厚さ17μm、ニッケル製)を用いると光透過率が高いので顕微鏡での観察も可能であった。これらの実施形態によれば、高価なシリンジポンプを用いた精密な流速制御を必要とせず、また金属製平板篩(マイクロシーブ)の隙間サイズを変更することで、前処理的に対象細胞よりも大きなサイズの不純物などの除去することもできた。
【実施例】
【0102】
(10)極薄フィルムを用いたラミネート式流路付膜フィルタ
極薄フィルムを用いたラミネート式流路付膜フィルタを利用したセルを作製した。このフィルタ断面の模式図を図26に示す。作製したフィルタは、セルの上面及び底面にポリイミドで構成された絶縁性極薄フィルム13が設けられ、細胞懸濁液を満たす間隙部を介して、微細孔絶縁膜3bが設けられた。このようなフィルタは、厚さ5μmのポリイミド製絶縁性極薄フィルム13(カプトン20EN,東レ・デュポン)、厚さ20μmの流路用フィルム(ハイブリッド接着シートSJ41,巴川製紙所、幅200μmの流路溝をもつ)、微細孔絶縁膜3b、流路用フィルム、絶縁性極薄フィルム13を順に重ねてラミネート接着して作製した。このラミネート流路フィルタを、それぞれが平板ITOで構成された上面電極2a及び底面電極2bで挟み、水などで隙間無く密着させることでセルを作製した。この実施例のセルでも、細孔内に高電界が形成され細胞を吸引することができた。本実施例では、病原菌などを含んだ細胞懸濁液は電極と直接接触しないため、電極部分2a、2bは再利用できフィルタはそのまま使い捨てとすることが可能となった。
【実施例】
【0103】
(11)高電導率懸濁溶液の使用による生細胞の吸引吐出
酵母の生細胞または死細胞を誘電体粒子のモデルとし、それぞれのモデル細胞を懸濁させる外部溶液の導電率を20~1000mS/mとし、周波数を変化させて、周波数とクラウジウス-モソッティ因子の実部(Re CMf)の関係を計算した。クラウジウス-モソッティ因子の実部は、以下の式に基づいて計算した。式中、ε、εは、それぞれ、粒子と溶媒の複素誘電率を表す。
【数1】
JP2019150016A_000005t.gif
【実施例】
【0104】
結果を図27に示す。外部溶液の導電率が100mS/m程度であれば、生細胞のクラウジウス-モソッティ因子が正となる周波数範囲で正の誘電泳動力が発生し、本発明の各実施形態にて説明した細孔に生細胞が吸引される。次いで、周波数を、生細胞のクラウジウス-モソッティ因子が負となる範囲に切り換えることで、生細胞に負の誘電泳動力が発生し、細孔から吐出することができる。これは図28に示す吸引率吐出率の実験結果とほぼ一致した。
【産業上の利用可能性】
【0105】
本発明の装置及び方法は、細胞培養や細胞アッセイにおいて有用であるのに加え、血中や尿中などの感染バクテリア、腫瘍細胞の分離検出などの医療分野での応用においても有効である。
【符号の説明】
【0106】
10、30 セル、20、20a、20b 交流発振器
1a ガラス基板、1b ガラス基板、
2a 上面電極、2b 底面電極、2c 電極
3 微細孔絶縁膜、31 微細孔
4 スペーサ、5 細胞懸濁液、
6 死細胞、7 生細胞
8 注入口、9 排出口
11 導電性被覆層、12 導電性網もしくは篩、13 絶縁性極薄フィルム
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20
【図22】
21
【図23】
22
【図24】
23
【図25】
24
【図26】
25
【図27】
26
【図28】
27
【図29】
28
【図30】
29
【図31】
30
【図32】
31