TOP > 国内特許検索 > 熱輻射光発電装置 > 明細書

明細書 :熱輻射光発電装置

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2018-143025 (P2018-143025A)
公開日 平成30年9月13日(2018.9.13)
発明の名称または考案の名称 熱輻射光発電装置
国際特許分類 H02S  10/30        (2014.01)
FI H02S 10/30
請求項の数または発明の数 6
出願形態 OL
全頁数 15
出願番号 特願2017-034724 (P2017-034724)
出願日 平成29年2月27日(2017.2.27)
発明者または考案者 【氏名】野田 進
【氏名】井上 卓也
【氏名】渡辺 晃平
【氏名】浅野 卓
出願人 【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
個別代理人の代理人 【識別番号】110001069、【氏名又は名称】特許業務法人京都国際特許事務所
審査請求 未請求
テーマコード 5F151
Fターム 5F151AA08
5F151DA03
5F151JA30
要約 【課題】出力密度及び発電効率が共に高い熱輻射光発電装置を提供する。
【解決手段】熱輻射体12と、熱輻射体12から離間して配置された、半導体層1111、1112、1121、1122を有する光電変換素子11と、熱輻射体12と光電変換素子11の間に、光電変換素子11に接し、各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長であるバンドギャップ波長の1/3以下の距離だけ熱輻射体12から離間して配置された、波長0.5~1000μmの光に関して誘電率の実部が正の値を有し且つ光電変換素子11において光電変換される波長範囲内の少なくとも一部の波長の光を透過する材料から成る中間部材13を有する。熱輻射体12と中間部材13が近いことから近接場光を利用できるため出力密度が高く、光電変換素子11で発電に寄与しない長波長の光が光電変換素子11の半導体層の表面を伝播することを防止することができるため発電効率が高い。
【選択図】図1
特許請求の範囲 【請求項1】
a) 熱輻射体と、
b) 前記熱輻射体から離間して配置された、1層又は複数層の半導体層を有する光電変換素子と、
c) 前記熱輻射体と前記光電変換素子の間に、該光電変換素子に接し、前記1層の半導体層を構成する半導体のバンドギャップエネルギーに対応する波長又は前記複数層の各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長であるバンドギャップ波長の1/3以下の距離だけ前記熱輻射体から離間して配置された、波長0.5~1000μmの光に関して誘電率の実部が正の値を有し且つ前記光電変換素子において光電変換される波長範囲内の少なくとも一部の波長の光を透過する材料から成る中間部材と
を備えることを特徴とする熱輻射光発電装置。
【請求項2】
前記熱輻射体と前記中間部材の距離が0.2μm以下とすることを特徴とする請求項1に記載の熱輻射光発電装置。
【請求項3】
前記熱輻射体と前記中間部材の距離が、前記中間部材を配置することなく前記熱輻射体と前記光電変換素子を離間して配置した構成において、該熱輻射体で生成される熱輻射光の全エネルギーに占める、該光電変換素子が表面波を吸収することにより生じるエネルギーの損失の割合が10%となる場合の該熱輻射体と該光電変換素子の距離よりも短いことを特徴とする請求項1又は2に記載の熱輻射光発電装置。
【請求項4】
前記中間部材の材料の屈折率が、前記光電変換素子において光電変換される波長範囲内において3以上であることを特徴とする請求項1~3のいずれかに記載の熱輻射光発電装置。
【請求項5】
前記熱輻射体が、前記中間部材が透過する波長の光を増幅するフォトニック結晶構造を有することを特徴とする請求項1~4のいずれかに記載の熱輻射光発電装置。
【請求項6】
前記熱輻射体が、表面に柱状部が複数形成された支持基体の該柱状部に載置されていることを特徴とする請求項1~5のいずれかに記載の熱輻射光発電装置。
発明の詳細な説明 【技術分野】
【0001】
本発明は、物体を加熱することにより生じる熱輻射光を光電変換することにより発電を行う熱輻射光発電装置に関する。なお、本明細書では「熱輻射光」には、可視光及び赤外線以外の電磁波を含むものとする。
【背景技術】
【0002】
一般に、物体を加熱すると、物体を構成する物質及び物体の温度に応じたスペクトルを有する熱輻射光が放出される。この熱輻射光を光電変換素子に照射することにより、発電を行うことができる。この原理を用いて、例えば火力発電所やエンジンを用いた発電機において発電に寄与することなく発生する熱で生じる熱輻射光により発電を行うことで、エネルギーの利用効率を高めることができる。また、熱源さえあれば、別途電源を用意することなく電力を得ることができる。例えば赤外線を用いてエンジンの排ガス中の成分を分析するための排ガスセンサにおいて、エンジンの廃熱で生じる熱輻射光により発電を行うことで、別途電源を用意することなく排ガスセンサを動作させるための電力を得ることができる。
【0003】
熱輻射光発電装置は、加熱によって熱輻射光を発する熱輻射体と、該熱輻射光を電気に変換する光電変換素子で構成されるが、光電変換素子を保護するため、両者を直接接触させることはできず、両者の間には隙間を設けなければならない。熱輻射体を加熱した際には、その内部を含む全体から熱輻射光が放出されるが、内部で生成された熱輻射光は、熱輻射体の表面から外部に放出される他、例えばその表面で全反射することにより熱輻射体内に留まるものも存在する。但し、このように熱輻射体内に留まる光であっても、その表面からわずかに外側(例えば表面から1μm未満の範囲内)には浸出している。このような光を近接場光という。近接場光も光電変換素子に取り込むことができれば、発電の出力密度を高くすることができる。そこで特許文献1に記載の熱輻射光発電装置は、熱輻射体と光電変換素子を構成する半導体層の距離(隙間の大きさ)を、熱輻射体の表面付近に生成される近接場光が該半導体層に伝播するように十分に小さく(例えばナノオーダー、すなわち1μm未満に)する、という構成をとっている。
【先行技術文献】
【0004】

【特許文献1】特開2008-300626号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光電変換素子のキャリアがドーピングされた半導体層では、発電に寄与する波長範囲よりも波長が長い領域において、誘電率の実部が負の値となる波長が存在する。これは、光の波長が長い、すなわち、周波数が小さく、電界の変化が遅いことにより、半導体中の電荷が光の電界を打ち消すように移動することができるためである。また、2種類以上の原子から構成される化合物半導体においては、その格子振動が光と結合することによっても、発電に寄与する波長範囲よりも波長が長い領域において、誘電率の実部が負の値となる波長が生じる。このような長波長の光は、半導体層内では電界の打ち消しが生じることにより伝播することができず、半導体層の表面付近に局在し、該表面に平行な方向に進行するもののみが伝播することができる。特許文献1に記載の熱輻射光発電装置において、熱輻射光源で生成された光のうちの一部が近接場光として半導体層に伝播したとしても、そのうちのこのように半導体層の表面付近でそれに平行な方向に伝播する長波長の光は発電に寄与することなく熱として消費されてしまい、有効に利用されない。以下、半導体層の表面付近に局在し、該表面に平行な方向に伝播する光を表面波と呼ぶ。
【0006】
本発明が解決しようとする課題は、熱輻射体から光電変換素子の半導体層に、発電に寄与する波長の近接場光は伝播させつつ、発電に寄与しない長波長の表面波が伝播することを防ぐことができ、それにより出力密度及び発電効率が共に高い熱輻射光発電装置を提供することである。
【課題を解決するための手段】
【0007】
上記課題を解決するために成された本発明に係る熱輻射光発電装置は、
a) 熱輻射体と、
b) 前記熱輻射体から離間して配置された、1層又は複数層の半導体層を有する光電変換素子と、
c) 前記熱輻射体と前記光電変換素子の間に、該光電変換素子に接し、前記1層の半導体層を構成する半導体のバンドギャップエネルギーに対応する波長又は前記複数層の各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長であるバンドギャップ波長の1/3以下の距離だけ前記熱輻射体から離間して配置された、波長0.5~1000μmの光に関して誘電率の実部が正の値を有し且つ前記光電変換素子において光電変換される波長範囲内の少なくとも一部の波長の光を透過する材料から成る中間部材と
を備えることを特徴とする。
【0008】
本発明に係る熱輻射光発電装置によれば、中間部材はバンドギャップ波長の1/3以下という十分に短い距離だけ熱輻射体から離間して配置されていると共に、中間部材の材料が、光電変換素子において光電変換される(発電に寄与する)波長範囲内の少なくとも一部の波長の光を透過するため、当該波長の光は近接場光を含めて熱輻射体から中間部材を通して光電変換素子に導入され、光電変換がなされて発電される。そのため、本発明に係る熱輻射光発電装置は出力密度が高い。
【0009】
一方、中間部材の材料が、0.5~1000μmの波長範囲内にある波長の光に関して誘電率の実部が正の値を有することにより、上記の波長範囲内では、熱輻射体に対向した中間部材の表面に表面波が生じない。また、表面波が中間部材の内部を伝播することがないため、熱輻射体から生じる熱輻射によって光電変換素子の半導体層の表面において表面波が誘起されることもない。従って、熱輻射体によって実用上得られる0.5~1000μmの全ての波長において、発電に寄与しない長波長の光が表面波となって中間部材や光電変換素子で熱として消費されてしまうことを防止することができる。これにより、本発明に係る熱輻射光発電装置は発電効率が高くなる。
【0010】
光電変換素子には、1層の半導体層と金属層を有するものと、複数層の半導体層を有するものがある。バンドギャップ波長は、前述のように、半導体層が1層である場合には当該半導体層を構成する半導体のバンドギャップエネルギーに対応する波長により定義し、半導体層が複数である場合には、各半導体層を構成する半導体のバンドギャップエネルギーのうちの最小のものに対応する波長により定義する。バンドギャップ波長は、光電変換素子において光電変換される波長範囲の最大値に対応する。
【0011】
前記熱輻射体と前記中間部材の距離は、中間部材を配置することなく前記熱輻射体と前記光電変換素子を離間して配置した構成(これは本発明に係る熱輻射光発電装置の構成とは異なることに注意)において、該光電変換素子が表面波を吸収することにより生じるエネルギーの損失が顕著となる0.2μm以下とすることが望ましい。この要件は、従来の熱輻射光発電装置では表面波の吸収により発電効率の低下が顕著になる距離以下まで、本発明に係る熱輻射光発電装置における熱輻射体と中間部材を近づけても、中間部材による表面波の吸収がほとんど生じないため、従来の熱輻射光発電装置に対する本発明に係る熱輻射光発電装置の効率の向上の効果が顕著になることを意味している。
【0012】
同様の理由により、前記熱輻射体と前記中間部材の距離は、前記中間部材を配置することなく前記熱輻射体と前記光電変換素子を離間して配置した構成において、熱輻射体で生成される熱輻射光の全エネルギーに占める、該光電変換素子が表面波を吸収することにより生じるエネルギーの損失の割合が10%となる場合の該熱輻射体と該光電変換素子の距離よりも短いことが望ましい。熱輻射体で生成される熱輻射光の全エネルギー及び光電変換素子が表面波を吸収することにより生じるエネルギーの損失の大きさは、数値計算により求めることができる。
【0013】
近接場光を介して中間部材が光電変換素子に伝達することができる熱輻射光のエネルギーは、屈折率の2乗に比例するため、前記中間部材の材料は、光電変換素子において光電変換される波長範囲内において屈折率が高いことが望ましく、例えば3以上であることが望ましい。そのような高い屈折率を有し、且つ、前述のように波長5~1000μmの光に関して誘電率の実部が正の値を有すると共に、熱輻射光発電装置で一般的に用いられている温度1000~2000Kの熱輻射体から発生する熱輻射光において主に発電に寄与する波長1.1~2.5μmの赤外光を透過する材料として、真性半導体の(すなわちキャリアが添加されていない)Siが挙げられる。
【0014】
前記熱輻射体は、前記中間部材が透過する波長の光を増幅するフォトニック結晶構造を有することが望ましい。フォトニック結晶構造は、周期的な屈折率の分布が形成された構造をいい、波長が異なる様々な光のうち、この周期に応じた特定の波長の光を選択的に、干渉により増幅するという特徴を有する。熱輻射体がこのようなフォトニック結晶構造を有することにより、中間部材を透過して光電変換素子で発電に寄与する波長の光を増幅することができ、それにより出力密度及び発電効率をより高くすることができる。また、フォトニック結晶構造を有する熱輻射体に太陽光を照射することで該熱輻射体を加熱し、該熱輻射体から放出される、発電に寄与する波長が増幅された光を光電変換素子に照射して光電変換をすることにより、太陽光を直接光電変換素子に照射して光電変換をする場合よりも光電変換の効率を高くすることができる。フォトニック結晶構造は、例えば半導体等から成る部材を周期的に配置することや、半導体等から成る板状の母材に該母材とは屈折率が異なる領域(異屈折率領域)を周期的に設けることにより形成することができる。異屈折率領域には、典型的には空孔を用いることができるが、母材とは異なる部材を空孔に埋め込んだものを用いてもよい。
【発明の効果】
【0015】
本発明により、熱輻射体から光電変換素子の半導体層に、発電に寄与する波長の近接場光は伝播させつつ、発電に寄与しない長波長の光が伝播することを防ぐことができ、それにより出力密度及び発電効率が共に高い熱輻射光発電装置を得ることができる。
【図面の簡単な説明】
【0016】
【図1】本発明に係る熱輻射光発電装置の一実施形態の要部を示す概略構成図。
【図2】本実施形態の熱輻射光発電装置における熱輻射体の一部分の構造を示す、光電変換素子と対向する表面の反対側からの斜視図。
【図3】半導体層の材料の一例であるn-InP、及び中間部材の材料の一例であるキャリアが添加されていないSiにつき、波長の相違による誘電率の実部の値の相違を示すグラフ。
【図4】InGaAs/InP光電変換素子を用いる場合において、厚み10μmの中間部材を有し、中間部材と熱輻射体の距離が(a)0.01μm(実施例1)及び(b)100μmを超える十分に長い距離(比較例1)である場合、並びに、中間部材が無く第1n型半導体層と熱輻射体の距離が(c)0.01μm(比較例2)及び(b)100μmを超える十分に長い距離(比較例3)である場合につき、熱輻射体から光電変換素子に達する熱輻射光のスペクトルを計算により求めた結果を示すグラフ。
【図5】InGaAs/InP光電変換素子を用いる場合において、(a)厚み10μmの中間部材を有する場合と、(b)中間部材がない場合につき、発電に寄与する熱輻射光及び損失となる熱輻射光の強度を全波長について積算した値を計算で求めた結果を示すグラフ。
【図6】InGaAs/InP光電変換素子を用いる場合において、中間部材の厚みtが0.1μm、1μm、10μm及び100μmの場合、並びに中間部材が無い場合についてそれぞれ、熱輻射体から放出される熱輻射光のうち発電に寄与するものの強度の割合(発電寄与率)を複数の距離d又はd'を対象として計算で求めた結果を示すグラフ。
【図7】InGaAs/InP光電変換素子を用いる場合において、第1n型半導体層の電子の添加量が(a)1×1019cm-3、(b)1×1018cm-3、及び(c)1×1017cm-3の場合について、厚み10μmの中間部材が有る場合と無い場合の発電寄与率を計算で求めた結果を示すグラフ。
【図8】GaSb光電変換素子を用いる場合において、(a)厚み10μmの中間部材を有する場合と、(b)中間部材がない場合につき、発電に寄与する熱輻射光及び損失となる熱輻射光の強度を全波長について積算した値を計算で求めた結果を示すグラフ。
【図9】GaSb光電変換素子を用いる場合において、厚み10μmの中間部材が有る場合と無い場合の発電寄与率を計算で求めた結果を示す。
【図10】本発明に係る熱輻射光発電装置の全体構成の一例を示す概略図。
【図11】熱輻射体におけるフォトニック結晶構造の他の例を示す斜視図。
【図12】本発明に係る熱輻射光発電装置の変形例である、熱輻射体がフォトニック結晶構造を有しない例を示す、要部の概略構成図。
【発明を実施するための形態】
【0017】
図1~図12を用いて、本発明に係る熱輻射光発電装置の実施形態を説明する。図1は、本実施形態の熱輻射光発電装置10の構成を概略図で示したものである。熱輻射光発電装置10は、光電変換素子11と、熱輻射体12と、中間部材(中間基板)13を有する。

【0018】
光電変換素子11は、第1n型半導体層1111、第2n型半導体層1112、第2p型半導体層1122、及び第1p型半導体層1121がこの順で積層した複数の半導体層から成る光電変換部110を有する。これら4層の半導体層の材料には例えば、上記の順に、n-InP、n-InGaAs、p-InGaAs、p-InPを用いることができる。以下、これら4層の半導体層を用いた光電変換素子を「InGaAs/InP光電変換素子」と呼ぶ。InGaAs/InP光電変換素子では、1.68μm以下の波長範囲内の光により光電変換が生じる。あるいは、これら4層の半導体層の材料に、上記の順に、n+-GaSb、n-GaSb、p-GaSb、p+-GaSbを用いることもできる。以下、これら4層の半導体層を用いた光電変換素子を「GaSb光電変換素子」と呼ぶ。ここでn+-GaSbはn-GaSbよりも電子の添加量が多いことを示し、p+-GaSbはp-GaSbよりも正孔の添加量が多いことを示している。GaSb光電変換素子では、1.77μm以下の波長範囲内の光により光電変換が生じる。

【0019】
第1n型半導体層1111には第1電極1131が接続され、第1p型半導体層1121には第2電極1132が接続されている。

【0020】
熱輻射体12は、キャリアが添加されていないSi(以下、「無添加Si」とする)から成り、光電変換素子11の第1n型半導体層1111に対向して該第1n型半導体層1111に平行に配置された板状部121と、板状部121の裏側(第1n型半導体層1111と対向する表面の反対側)の表面に設けられたフォトニック結晶部122を有する。フォトニック結晶部122は、図2に示すように、Siから成るロッド状の部材であるロッド部材1221を平行に周期(間隔)aで多数、板状部121の裏側の表面に配置することにより構成されている。熱輻射体12は、外部の熱源から熱を受けて熱輻射光を発光し、フォトニック結晶部122において周期aに対応する波長の光を選択的に増幅する。なお、ここで増幅される光の波長は、フォトニック結晶部122内における波長を指し、真空中における波長λ0をフォトニック結晶部122の有効屈折率neffで除した値である。有効屈折率neffは、フォトニック結晶部122に分布する光の電界強度の割合、及びフォトニック結晶部122全体に対するロッド部材1221の充填率を考慮した屈折率である。周期aの具体例は、中間部材13の構成と共に後述する。

【0021】
中間部材13は、無添加Siから成る板状の部材であり、光電変換素子11の第1n型半導体層1111及び熱輻射体12の板状部121の間に、それら第1n型半導体層1111及び熱輻射体12と平行に配置されている。中間部材13は、光電変換素子11の第1n型半導体層1111には接しているのに対して、熱輻射体12の板状部121との間は所定の距離dだけ離間されている。距離dは、光電変換素子11の4層の半導体層をそれぞれ構成する半導体のバンドギャップエネルギーのうち最小の値に対応するバンドギャップ波長の1/3以下とする。この距離dは、波長が光電変換素子11において発電に寄与する範囲内にある、熱輻射による近接場光が、熱輻射体に対向する物体に伝播可能となる距離に対応する。例えば、InGaAs/InP光電変換素子では、バンドギャップ波長は1.68μmであり、距離dは0.560μm以下である。GaSb光電変換素子では、バンドギャップ波長は1.77μmであり、距離dは0.590μm以下である。

【0022】
本実施形態における中間部材13の材料である無添加Siは、図3に示すように、0.5~1000μmの全ての波長において、誘電率の実部が正の値を有する。これは、中間部材13の表面において表面波が伝播しないことを意味している。また、無添加Siは、1.1~1.7μmの範囲内の波長を有する光を透過する。この波長範囲は、InGaAs/InP光電変換素子及びGaSb光電変換素子のいずれの例に関しても、光電変換素子において光電変換される波長範囲に含まれている。従って、熱輻射体12において熱輻射により発光する、1.1~1.7μmの範囲内の波長を有する光は、中間部材13を透過して光電変換素子11に到達することができ、光電変換素子11で光電変換される。熱輻射体12のフォトニック結晶部122において増幅される光の波長をこの中間部材13を透過して光電変換素子11で光電変換される波長範囲内の波長に合わせるように、ロッド部材1221の周期aを設定する。

【0023】
本実施形態の熱輻射光発電装置10の動作を説明する。外部の熱源により、熱輻射体12を加熱する。これにより、熱輻射体12は、加熱温度に対応したスペクトルを有する熱輻射光を生成する。この熱輻射光のうち、フォトニック結晶部122に設けられたロッド部材1221の周期aに対応する波長の光が増幅される。そのため、熱輻射体12から放出される熱輻射光のスペクトルは、周期aに対応する波長における強度が強められたものとなる。熱輻射体12から放出された熱輻射光のうち、周期aに対応する波長を含む、中間部材13を透過する波長の光は、光電変換素子11に到達し、光電変換される。このように周期aに対応する波長の光の強度が増幅されていることは、光電変換の出力密度及び効率を高めることに寄与する。

【0024】
また、熱輻射体12の板状部121の表面には、そのままでは熱輻射体12の外には放出されない近接場光が浸出している。このうち、中間部材13に対向する表面に浸出し、中間部材13を透過する波長を有する近接場光は、熱輻射体12と中間部材13が前記バンドギャップ波長の1/3以下という短い距離しか離間されていないため、熱輻射体12から中間部材13に伝播することができ、それにより光電変換素子11に到達して光電変換される。この点において、熱輻射光発電装置10は光電変換の出力密度が高い。

【0025】
一方、中間部材13が無添加Siから成るため、中間部材13の表面には0.5~1000μmの全ての波長において表面波が生成されない。そのため、熱輻射体12で生成された熱輻射光のうち、光電変換素子11において発電に寄与しないバンドギャップ波長よりも長波長の光が表面波として熱輻射体12から中間部材13に伝播することを防ぐことができる。光電変換素子11の第1n型半導体層1111は表面に表面波が存在可能な材料から成るが、表面波が中間部材13内を伝播することがないため、熱輻射体から生じる熱輻射によって該表面に表面波が誘起されることはない。従って、このような長波長の光は、熱輻射体12内に留まり、熱として熱輻射体12に吸収される。こうして熱輻射体12に吸収された熱の一部は、熱輻射により、中間部材13を透過して光電変換素子11で光電変換が可能な波長となるため、光電変換の効率は高くなる。

【0026】
以上のように、本実施形態の熱輻射光発電装置10は、3つの要因により光電変換の出力密度及び効率が共に高くなる。特に、長波長の表面波が中間部材13の表面に伝播しないことによる光電変換の効率の向上は、従来の熱輻射光発電装置には無い顕著な効果である。

【0027】
以下、より具体的な例においてシミュレーションを行った結果を示す。まず、InGaAs/InP光電変換素子につき、以下の条件1でシミュレーションを行った。
第1n型半導体層1111:n-InP製、厚み0.1μm、電子添加密度2×1018cm-1
第2n型半導体層1112:n-InGaAs製、厚み0.3μm、電子添加密度1×1018cm-1
第2p型半導体層1122:p-InGaAs製、厚み2.0μm、正孔添加密度1×1017cm-1
第1p型半導体層1121:p-InP製、厚み0.1μm、正孔添加密度2×1018cm-1
板状部121:無添加Si製、厚み1.5μm。
フォトニック結晶部122:無添加Si製、厚み0.5μm、周期a0.4μm、ロッド部材1221の幅0.28μm。
熱輻射体12の加熱温度:1400K。
中間部材13:無添加Si製、厚みtはシミュレーション毎に異なる。
距離d:シミュレーション毎に異なる。

【0028】
条件1において、中間部材13の厚みtを10μmとし、距離dを(a)0.01μm(実施例1)及び(b)100μmを超える十分に長い距離(比較例1)とした場合について、熱輻射体12から光電変換素子11に達する熱輻射光のスペクトルを計算により求めた。また、光電変換素子11及び熱輻射体12は上記と同様の構成であって、中間部材13が無い場合について、板状部121と第1n型半導体層1111の距離(d'とする)を(c)0.01μm(比較例2)及び(d)100μmを超える十分に長い距離(比較例3)とした場合についても、同様の計算を行った。

【0029】
この計算の結果を図4に示す。図4には、光電変換素子11における発電に寄与する熱輻射光の強度と、発電に寄与することなく光電変換素子11の各半導体層を通過する熱輻射光の強度(透過損失)と、中間部材13(実施例1及び比較例1)又は第1n型半導体層1111(比較例2及び3)の表面における表面波の強度を示した。併せて、各図に、1400Kの黒体輻射のスペクトルを示した。

【0030】
実施例1では、バンドギャップ波長以下の波長領域において、1400Kの黒体輻射よりも大きい強度で発電に寄与する熱輻射光が光電変換素子11に達している。それに対して比較例1及び3ではいずれも、バンドギャップ波長以下の波長領域において、発電に寄与する熱輻射光の強度は1400Kの黒体輻射の強度よりも小さい。これは、実施例1では、熱輻射体12と中間部材13の距離dがバンドギャップ波長の1/3以下である0.01μmという十分に短いことにより、黒体輻射では熱輻射体12の外に放出されない近接場光が中間部材13を通して光電変換素子11に導入されるのに対して、比較例1及び3では距離d又はd'が100μmを超えて十分に長いため、近接場光が光電変換素子11に導入されないことによる。なお、比較例2は、発電に寄与する熱輻射光の強度が実施例1と同程度の強度を有し、近接場光が光電変換素子11に導入されていると考えられる。しかし、比較例2は次に述べる問題を有している。

【0031】
比較例2では、発電に寄与しない10μmを超える波長範囲において、表面波による吸収損失が生じるのに対して、実施例1では表面波による吸収損失は見られない。これは、実施例1では光電変換素子11と熱輻射体12の間に、0.5~1000μmの全ての波長において誘電率の実部が正の値を有する無添加Siから成る中間部材13が設けられていることにより、表面波の生成が阻止されていることによる。

【0032】
以上のように、実施例1では近接場光を光電変換素子11に導入することで出力密度を高くしつつ、表面波による吸収損失を抑制することができるため発電の効率を高くすることができる。

【0033】
次に、厚みtが10μmである中間部材13を有する場合について距離dが異なる複数の例につき、発電に寄与する熱輻射光及び損失となる熱輻射光の強度を全波長について積算した値を計算で求めた結果を図5(a)に示す。同様に、中間部材13が無い場合について、距離d'が異なる複数の例につき同様の計算を行った結果を図5(b)に示す。図5(a)より、熱輻射体から生じる熱輻射光の全体の強度の積算値は、バンドギャップ波長の1/3の波長(同図中に「λgap/3」と記載)に対応する長さよりも距離dが長い場合にはほとんど変わらないのに対して、λgap/3よりも距離dが短い場合には、距離dが短くなるに従って増加することがわかる。これは、バンドギャップ波長の1/3の波長よりも距離dを短くすることにより、中間部材13を介して近接場光を光電変換素子11に導入することができることを意味している。

【0034】
図5(a)と(b)を対比すると、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13を有する場合よりも中間部材13が無い場合の方が、光電変換素子11中で熱輻射体12に最も近い第1n型半導体層1111における吸収損失が高くなっていることがわかる。これは、中間部材13が無い場合には第1n型半導体層1111の表面に長波長の表面波が伝播することによる損失が生じるのに対して、中間部材13を有する場合にはそのような損失が生じないことによる。また、距離dが0.2μmよりも小さい範囲は、中間部材13が無い場合(図5(b))において第1n型半導体層1111の吸収損失が熱輻射体から生じる熱輻射光の全体の強度の積算値の10%以上となる範囲とも対応しており、中間部材13を挿入することで損失の割合を減少させることができることがわかる。

【0035】
図6に、中間部材13の厚みtが0.1μm、1μm、10μm及び100μmの場合についてそれぞれ、熱輻射体12から放出される熱輻射光のうち発電に寄与するものの強度の割合(発電寄与率)を複数の距離dを対象として計算で求めた結果を示す。同図には併せて、中間部材13が無い場合について、複数の距離d'を対象として同様の計算を行った結果を示す。中間部材13が有る場合と無い場合を、距離dと距離d'が同じであるときについて対比すると、中間部材13の厚みがいずれの場合にも、距離dが0.2μm以下の領域において、中間部材13が無い場合との発電寄与率の差が顕著となる。また、距離dが0.2μm以下の領域において、中間部材13の厚みが1μm及び10μmの場合には、0.1μm及び100μmの場合よりも、発電寄与率がやや高くなる。これは、厚みtが小さくなるほど、光電変換素子11の表面に生成される表面波に、熱輻射体12から中間部材13を超えて直接結合する長波長の光の比率が高くなることと、厚みtが大きくなるほど中間部材13において光が吸収される比率が高くなることから、これら2つの発電寄与率の減少の要因が相対的に小さい、厚みtが1μm及び10μmの場合に発電寄与率が高くなっていると考えられる。

【0036】
図7に、第1n型半導体層1111の電子の添加量が(a)1×1019cm-3、(b)1×1018cm-3、及び(c)1×1017cm-3の場合について、厚み10μmの中間部材13が有る場合と無い場合の発電寄与率を計算で求めた結果を示す。電子の添加量が最も多い(a)では、距離dを小さくすると発電寄与率が(b)及び(c)よりもやや低くなっている。これは、電子が多くなることによって第1n型半導体層1111において光の吸収による損失が大きくなることによる。それ以外の点では、第1n型半導体層1111の電子の添加量の相違による影響はほとんど見られず、いずれの場合にも、距離dが0.2μmよりも小さいときに、中間部材13が無い場合よりも発電寄与率が顕著に高くなっている。

【0037】
次に、GaSb光電変換素子につき、以下の条件2について、図5及び図6と同様の計算を行った。
第1n型半導体層1111:n-GaSb製、厚み0.05μm、電子添加密度2×1018cm-1
第2n型半導体層1112:n-GaSb製、厚み0.3μm、電子添加密度1×1018cm-1
第2p型半導体層1122:p-GaSb製、厚み2.0μm、正孔添加密度1×1017cm-1
第1p型半導体層1121:p-GaSb製、厚み0.05μm、正孔添加密度2×1018cm-1
板状部121:無添加Si製、厚み1.5μm。
フォトニック結晶部122:無添加Si製、厚み0.5μm、周期a0.4μm、ロッド部材1221の幅0.28μm。
熱輻射体12の加熱温度:1400K。
中間部材13:無添加Si製、厚み10μm。
距離d:複数の値。

【0038】
図8に示すように、条件2においても条件1の場合と同様に、距離dがバンドギャップ波長の1/3よりも短い範囲内で、距離dが短くなるほど、発電に寄与する熱輻射光の強度が大きくなる。また、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13を有する場合よりも中間部材13が無い場合の方が、光電変換素子11中で熱輻射体12に最も近い第1n型半導体層1111における吸収損失が高くなっている。

【0039】
また、図9に示すように、条件2においても条件1の場合と同様に、距離d又はd'が0.2μmよりも小さい範囲において、中間部材13が有る場合と無い場合の発電寄与率の差が顕著となる。

【0040】
図10に、光電変換素子11、熱輻射体12及び中間部材13以外の構成要素を含む、本発明の熱輻射光発電装置の全体構成の一例を示す。この例では、熱輻射体12を支持する支持基体(支持基板)14を用いている。熱輻射体12に面する支持基体14の表面には、該表面から支持基体14内に向かって空洞141が複数設けられており、最近接の空洞141同士の間に柱状部142が形成されている。熱輻射体12は、柱状部142においてのみ、支持基体14と接している。このような構成により、空洞141の無い支持基体で熱輻射体12を支持する場合よりも、支持基体14における熱伝導の損失を小さくすることができるうえに、支持基体14の熱膨張による熱輻射光発電装置の変形が生じることを抑えることができる。空洞141は、複数の溝を平行に設けたものや、複数の孔を2次元状に配置したものを用いることができる。熱源として太陽光を用いる場合には、支持基体14の材料には、太陽光を透過し、且つウエットエッチングにより空洞141及び柱状部142を容易に作製することができるという点で、SiO2を好適に用いることができる。

【0041】
支持基体14の上面の縁(空洞141が設けられた領域の外側)の上にはスペーサ15が設けられており、スペーサ15の上に中間部材13が載置されている。このスペーサ15の厚みにより、熱輻射体12と中間部材13の距離dを設定することができる。

【0042】
本発明は上記の実施形態には限定されない。
例えば、上記各実施形態では、光電変換素子はn型半導体から成る層とp型半導体から成る層をそれぞれ2層ずつ有しているが、それらが1層ずつ、あるいは3層以上ずつであってもよい。また、n型又はp型の半導体から成る1層の半導体層と金属層を接合した構成を有する、ショットキー接合を利用した光電変換素子を用いてもよい。光電変換素子の各半導体層の材料は上記の例には限定されず、通常の光電変換素子(太陽電池)に用いられている光電変換層の半導体の材料であれば、適用することができる。熱輻射体12の材料も上記のものには限定されない。さらには、中間部材13の材料も上記のものには限定されず、波長0.5~1000μmの光に関して誘電率の実部が正の値を有し、且つ前記バンドギャップ波長以下の波長の光(すなわち、光電変換素子で発電に寄与する波長の光)を透過する材料であればよい。

【0043】
熱輻射体が有するフォトニック結晶構造は、上記の例には限定されず、例えば図11(a)に示した、板状の母材1222Aに複数の空孔1221Aを2次元状に周期的に設けたものや、空孔1221Aの代わりに母材1222Aとは屈折率が異なる部材を埋め込んだものを用いることができる。あるいは、図11(b)に示すように、柱状部材1221Bを2次元状に配置したものをフォトニック結晶構造として用いてもよい。さらには、図11(c)に示すように、ロッド部材1221Cを井桁状に、3次元状に組み合わせたものをフォトニック結晶構造として用いてもよい。また、上記の例では熱輻射体12の一部のみをフォトニック結晶部122としたが、熱輻射体の全体にフォトニック結晶構造を形成してもよい。

【0044】
本発明の熱輻射光発電装置では、熱輻射体がフォトニック結晶構造を有することは必須ではなく、図12に示すように、フォトニック結晶構造を有しない熱輻射体12Aを用いた構成であってもよい。このような構成を有する熱輻射光発電装置10Aでは、中間基板を透過する波長範囲内の近接場光を光電変換することができることにより出力密度を高くすることができ、バンドギャップ波長よりも長波長の光が表面波として熱輻射体12Aから中間部材13に伝播することを防ぐことができることにより光電変換の効率が高くなる。
【符号の説明】
【0045】
10、10A…熱輻射光発電装置
11…光電変換素子
110…光電変換部
1111…第1n型半導体層
1112…第2n型半導体層
1121…第1p型半導体層
1122…第2p型半導体層
1131…第1電極
1132…第2電極
12、12A…熱輻射体
121…板状部
122…フォトニック結晶部
1221、1221C…ロッド部材
1221A…空孔
1221B…柱状部材
1222A…母材
13…中間部材
14…支持基体
141…空洞
142…柱状部
15…スペーサ
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11