TOP > 国内特許検索 > 重症化推定装置及び重症化推定プログラム > 明細書

明細書 :重症化推定装置及び重症化推定プログラム

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2019-017998 (P2019-017998A)
公開日 平成31年2月7日(2019.2.7)
発明の名称または考案の名称 重症化推定装置及び重症化推定プログラム
国際特許分類 A61B   5/00        (2006.01)
FI A61B 5/00 G
請求項の数または発明の数 6
出願形態 OL
全頁数 11
出願番号 特願2018-128053 (P2018-128053)
出願日 平成30年7月5日(2018.7.5)
優先権出願番号 2017138390
優先日 平成29年7月14日(2017.7.14)
優先権主張国 日本国(JP)
発明者または考案者 【氏名】高木 俊介
出願人 【識別番号】505155528
【氏名又は名称】公立大学法人横浜市立大学
個別代理人の代理人 【識別番号】100137589、【弁理士】、【氏名又は名称】右田 俊介
審査請求 未請求
テーマコード 4C117
Fターム 4C117XB09
4C117XB12
4C117XB16
4C117XE13
4C117XE15
4C117XE23
4C117XE24
4C117XE37
4C117XG12
4C117XG17
4C117XG19
4C117XG33
4C117XG43
4C117XG45
4C117XJ27
4C117XJ34
4C117XJ36
4C117XJ37
4C117XJ38
4C117XL11
要約 【課題】被験者である患者に関する種々の情報に基づいて、被験者である患者の重症化を高精度に推定する重症化推定装置及び重症化推定プログラムを提供する。
【解決手段】コンピュータ端末10は、データベース40から抽出した患者情報に基づく第1変数及び第2変数が縦軸及び横軸のそれぞれに対応している静的スコアリングモデルを生成する機能と、患者30に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から第1変数と第2変数を導出して静的スコアリングモデルに順次プロットする機能と、当該機能によるプロットが静的スコアリングモデルの特定領域に行われた時点を、被験者が重症化したタイミングとして推定する機能と、を実現し、第1変数と第2変数のうち少なくとも一方が複数種類の患者情報を用いて導出される指標であることを特徴とする。
【選択図】図1
特許請求の範囲 【請求項1】
複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、
被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、
前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、を含み、
前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標である重症化推定装置。
【請求項2】
前記第1変数の導出に用いる患者情報と、前記第2変数の導出に用いる患者情報と、が少なくとも一種類について共通している請求項1に記載の重症化推定装置。
【請求項3】
前記第1変数は、心拍数を収縮期血圧で除して導出される指標であり、
前記第2変数は、心拍数、収縮期血圧、呼吸数、酸素飽和度及び体温に基づいて導出される指標である請求項2に記載の重症化推定装置。
【請求項4】
前記第1変数は、心拍数を収縮期血圧で除して導出される指標であり、
前記第2変数は、年齢、拡張期血圧、体温、心拍数、呼吸数及び酸素飽和度に基づいて導出される指標である請求項2に記載の重症化推定装置。
【請求項5】
前記モデル生成手段は、前記被験者に係る患者情報のうち少なくとも一種類をキーとして前記データベースから複数の患者を検索し、検索された複数の患者に係る患者情報に基づいて前記静的スコアリングモデルにおける前記特定領域を定める請求項1から4のいずれか一項に記載の重症化推定装置。
【請求項6】
複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、
被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、
前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、をコンピュータに実行させるためのプログラムであり、
前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標であることを特徴とする重症化推定プログラム。
発明の詳細な説明 【技術分野】
【0001】
本発明は、重症化推定装置及び重症化推定プログラムに関する。
【背景技術】
【0002】
近年、医療分野において、或る患者から計測された生体情報をその患者の治療や診断等に活用するだけではなく、他の患者の治療や診断等にも活用するための研究・開発が行われている。
この種の技術として、下記の特許文献1を例示する。
【0003】
特許文献1には、患者が重篤化した場合にアラームを生成するシステムが記載されている。当該システムは、早期警告スコア(early warning scores:EWS)、修正型早期警告スコア(modified early warning scores:MEWS)、生命徴候インデックス(vital signs index:VIX)といった種々の生理的スコア付けシステム又は生理的パラメータを利用するものである。
特許文献1には、早期警告スコアに用いられる情報の一部である心拍数と呼吸数の実測値を、心拍数を縦軸とし呼吸数を横軸とする二次元モデルにプロットし、そのプロットが二次元モデルの特定領域に表示されるとアラームを生成する旨が開示されている。
【先行技術文献】
【0004】

【特許文献1】特表2014-510603号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1の開示されている二次元モデルは、早期警告スコアを視覚的に表示することによって直感的な判断を容易とする点において有用である。しかしながら、早期警告スコアは、心拍数と呼吸数の他に、収縮期血圧、酸素飽和度及び体温といったパラメータも加味して患者の重篤度を判断する指標であるにも関わらず、心拍数と呼吸数のみを選択的に使用しているため、その妥当性が不十分になることが懸念される。
【0006】
本発明は、上記の課題に鑑みなされたものであり、被験者である患者に関する種々の情報に基づいて、被験者である患者の重症化を高精度に推定する重症化推定装置及び重症化推定プログラムを提供するものである。
【課題を解決するための手段】
【0007】
本発明によれば、複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、を含み、前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標である重症化推定装置が提供される。
【0008】
本発明によれば、複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、をコンピュータに実行させるためのプログラムであり、前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標であることを特徴とする重症化推定プログラムが提供される。
【0009】
本発明においては、スコアリングする二次元モデル(静的スコアリングモデル)の縦軸及び横軸に対応する第1変数及び第2変数のうち少なくとも一方が複数種類の患者情報を用いて導出される指標である。従って、本発明は、従来技術に比べて妥当性の高い患者情報を二次元モデルにプロットすることができ、被験者が重症化したタイミングを高い精度で推定することができる。
【発明の効果】
【0010】
本発明によれば、被験者である患者に関する種々の情報に基づいて、被験者である患者の重症化を高精度に推定する重症化推定装置及び重症化推定プログラムが提供される。
【図面の簡単な説明】
【0011】
【図1】本発明を実現するためのシステム構成図である。
【図2】コンピュータ端末の表示画面の一具体例を示す図である。
【発明を実施するための形態】
【0012】
以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。

【0013】
<本発明に係る重症化予測装置について>
まず、本発明に係る重症化予測装置について図1及び図2を用いて説明する。
図1は、本発明を実現するためのシステム構成図である。図2は、コンピュータ端末10の表示画面の一具体例を示す図である。

【0014】
本発明に係る重症化予測装置は、例えば、専用のアプリケーションソフト(本発明に係る重症化予測プログラム)がインストールされたコンピュータ端末10によって実現される。
コンピュータ端末10は、当該アプリケーションソフトに係る処理を実行することによって後述する各機能を実現することができ、その実現に必要なハードウェア資源を含んでいる。ここでハードウェア資源とは、具体的には、コンピュータ端末10に内蔵されているCPUやメモリ、利用者の操作入力を受け付ける入力装置、及び利用者の操作や各機能の実現に必要な画面や音声等を出力する出力装置等を例示することができる。

【0015】
コンピュータ端末10は、少なくとも以下の機能を実現することができる。
第一の機能は、データベース40から各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した第1変数及び第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するものである(以下、モデル生成手段と称する)。
第二の機能は、被験者である患者30に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から第1変数と第2変数を導出して静的スコアリングモデルに順次プロットしていくものである(以下、スコアリング手段と称する)。
第三の機能は、スコアリング手段によるプロットが静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、被験者が重症化したタイミングとして推定するものである(以下、重症化推定手段と称する)。

【0016】
データベース40は、複数の患者について経時的に取得された複数種類の患者情報を蓄積している。データベース40は、本発明の導入を目的として設けられた専用のデータベースであってもよいし、本発明とは別に導入されているシステム(例えば、電子カルテシステム)のために設けられた一般的なデータベースであってもよい。
データベース40に蓄積されている患者情報とは、患者の個人的属性に係る情報(例えば、患者の氏名、性別、年齢、疾患名、患者の識別番号等)及び患者の生体情報(例えば、体温、心拍数、呼吸数、酸素飽和度、血圧等)が含まれる。なお、ここで血圧とは、収縮期血圧、拡張期血圧、平均血圧のいずれもが該当しうる。
静的スコアリングモデルとは、データベース40に蓄積されている患者情報から導出可能な第1変数及び第2変数を縦軸及び横軸とする二次元モデルである。なお、本発明に係る静的スコアリングモデルは、モデル生成手段により生成された以降において重症化推定手段による処理の基準となる特定領域の範囲が不変であることをもって「静的」と称する。従って、モデル生成手段が用いる諸条件によって静的スコアリングモデルの特定領域は可変に変更可能であるし、コンピュータ端末10の表示画面に表示される静的スコアリングモデルの表示態様は動的に変化可能である。
ここで第1変数と第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標である。例えば、図2に図示する例によれば、横軸に対応する第1変数はショックインデックスであり、縦軸に対応する第2変数は修正型早期警告スコアである。この例に代えて、第1変数又は第2変数の一方を心拍数、呼吸数又は収縮期血圧といった単一種類の患者情報(生体情報)としてもよい。

【0017】
図2に示すように、コンピュータ端末10の表示画面は、主に4つの部分に大別することができる。図2において、これらの4つの部分を破線で囲って示す。なお、これらの破線は実際に表示されるものではない。

【0018】
最上段に位置する患者属性表示部DR1は、被験者(患者30)の個人的属性に係る情報を表示する領域である。本実施形態においては、患者の識別番号、氏名、入室時年齢、性別、転入した診療科、入室分類番号又は手術分類番号、滞在日数、及び診断された疾患名が、患者属性表示部DR1に表示される。
なお、診断された疾患名は、複数表示することが可能に構成されているが、図2においては一種類のみが表示されている状態を図示している。

【0019】
中段右側に位置する指標推移表示部DR2は、修正型早期警告スコア及びショックインデックスの時間的変化を表示する領域である。本実施形態における指標推移表示部DR2の表示は、縦軸が修正型早期警告スコア又はショックインデックスであり、横軸が時間である。修正型早期警告スコア及びショックインデックスの推移は実線で示し、各々に+1σを載せた値の推移は一点鎖線で示し、各々に-1σを載せた値の推移は二点鎖線で示す。ここでσは、修正型早期警告スコア又はショックインデックスの標準偏差である。
上記の修正型早期警告スコア及びショックインデックスが経時的に変化する様を観察することにより、患者の容態が現状より悪化するか改善するかは予測が可能である。さらに、各々に±1σを載せた値も参照して修正型早期警告スコア及びショックインデックスのバラツキを解析することにより、更に高い精度で患者の容態を予測することができる。
なお、指標推移表示部DR2における横軸には上限が設定される。例えば、図2においては20分を上限とし、その範囲内で修正型早期警告スコア及びショックインデックスの時間的変化が表示される。指標推移表示部DR2に表示される時間帯は、後述の時間帯表示部DR4に表示される。

【0020】
中段左側に位置するモデル表示部DR3は、静的スコアリングモデルを表示する領域である。本実施形態における静的スコアリングモデルは、状態安定ゾーンNZ、要注意ゾーンWZ、及び末期ゾーンTZの3つの領域の区分されている。状態安定ゾーンNZが患者30の容態が最も安定していることを示す領域であり、末期ゾーンTZが患者30の容態が最も危険な状態であることを示す領域である。コンピュータ端末10は末期ゾーンTZへのプロット時を被験者が重症化したタイミングとして推定する。即ち、末期ゾーンTZが、上記の特定領域に相当する。
末期ゾーンTZへのプロットが行われたとしても直ちに重症化したものと推定せずともよい。患者30の容態が一時的に変化して末期ゾーンTZにプロットがなされたとしても、直ぐに持ち直すのであれば、重症化している可能性は低いと考えられるからである。従って、一定時間にわたって末期ゾーンTZにプロットがされた場合(一定数のプロットが末期ゾーンTZに継続して行われた場合)、患者30の重症化を推定してもよい。
なお、本実施形態では説明の便宜上、これらの3つの領域を識別可能に図示したが、コンピュータ端末10は必ずしも各領域を識別可能に表示しなくてもよい。

【0021】
最下段に位置する時間帯表示部DR4は、その時点で指標推移表示部DR2に表示される時間帯が、全体時間のいずれの部分に該当するかを表示する領域である。より詳細には、全体時間のうち選択領域SR(時間帯表示部DR4中の網掛け部分)が指標推移表示部DR2に表示される時間帯に該当する。

【0022】
上記のようなコンピュータ端末10の表示画面に表示される各種情報は、データベース40に蓄積されている各データに基づき生成され、又は計測器20によって経時的に計測される患者30の生体情報(バイタルサイン)に基づき生成される。これにより、患者30の全身状態(容態)の「見える化」を図ることができる。
計測器20による生体情報の計測の時間間隔(コンピュータ端末10が計測器20から計測結果を取得する時間間隔)は任意であるが、一定の精度で患者30の重症化タイミングを推定するためには、分オーダー以下であることが好ましい。ここで分オーダー以下とは、コンピュータ端末10が取得する時間間隔が1時間(60分)を超えない範囲であることをいい、より好ましくは10分を超えない範囲であることをいう。なお、本実施形態では、計測器20による生体情報の計測の時間間隔は原則として1分間隔とする。

【0023】
以上のように、本発明は、過去の多数の患者情報に基づいて生成される静的スコアリングモデルを用いたコンピュータ処理により、患者30の重症化を高精度且つ自動的に推定し、治療介入の必要なタイミングを適切に医療関係者に報知することができる。
以下、本発明が有する各特徴について、それぞれ詳細に説明する。

【0024】
<第1変数と第2変数について>
第1変数と第2変数については、第1変数の導出に用いる患者情報と、第2変数の導出に用いる患者情報と、が少なくとも一種類について共通しているものを採用することが好ましい。これにより、互いに一定の相関関係を有することになり、静的スコアリングモデルに描かれるプロットの動きがより、被験者の重症化を推測する上でより有意なものになる。

【0025】
例えば、図2に示す静的スコアリングモデルの例によれば、第1変数は、心拍数を収縮期血圧で除して導出されるショックインデックスであり、第2変数は、心拍数、収縮期血圧、呼吸数、酸素飽和度及び体温に基づいて導出される修正型早期警告スコアである。

【0026】
修正型早期警告スコアの導出方法について説明する。以下の表は、修正型早期警告スコアの導出に用いられるものである。
【表1】
JP2019017998A_000003t.gif

【0027】
コンピュータ端末10は、単位時間ごとに取得した呼吸数(RR)、酸素飽和度(SpO2)、体温(BT)、収縮期血圧(ABPs)、及び心拍数(HR)を上表に照らし合わせることによって、各項目のスコアを求める。そして、求めたスコアの合算値が修正型早期警告スコアになる。従って、例えば、或る時点における患者30の患者情報が、呼吸数18回、酸素飽和度95%、体温が38.5度、収縮期血圧が100mmHg、心拍数100回であった場合、修正型早期警告スコアは5(=0+1+1+2+1)になる。
上記のように導出されるため、修正型早期警告スコアは0(零)以上の整数として導出される。

【0028】
或いは、本発明の実施において、第1変数はショックインデックスを用いた上で、第2変数を修正型早期警告スコアに代えて治療介入予測スコア(Intervention Prediction Score:IPS)を用いてもよい。ここで、治療介入予測スコアとは、本発明者が独自に構築した指標であって、年齢、拡張期血圧、体温、心拍数、呼吸数及び酸素飽和度に基づいて導出されるものである。治療介入予測スコアの詳細については、後に述べる。

【0029】
<末期ゾーンTZの定め方について>
続いて、静的スコアリングモデルにおける末期ゾーンTZの定め方について述べる。末期ゾーンTZを定めるにあたって、横軸に対応するショックインデックス(第1変数)の閾値と、修正型早期警告スコア(第2変数)の閾値と、をそれぞれ定める必要がある。

【0030】
なお、コンピュータ端末10(モデル生成手段)は、被験者に係る患者情報のうち少なくとも一種類をキーとしてデータベース40から複数の患者を検索し、検索された複数の患者に係る患者情報に基づいて静的スコアリングモデルにおける末期ゾーンTZ(第1変数と第2変数の閾値)を定めることが好ましい。被験者と近しい属性や疾患を抱えている患者を対象として解析した方が、被験者の重症化をより高精度に推定可能だからである。
以下の説明においては、静的スコアリングモデルにおける末期ゾーンTZの設定のために、リウマチ・血液疾患に罹患しており、且つ集中治療室に緊急で入室した18人の患者をデータベース40から取得して解析対象とした。

【0031】
具体的には、これらの18人の患者を対象として、気管挿管や昇圧剤投与等の治療介入を行った時点及び当該時点の前後30分における患者情報を取得した(以下、この60分間における患者情報を、介入群データと称する)。
更に、同一の18人の患者を対象として、治療介入を行った時点から24時間後を基準時とし、その基準時の前後30分における患者情報を取得した(以下、この60分間における患者情報を、安定群データと称する)。
なお、どの時点を基準とするか、又は基準とした時点からどれだけの期間における患者情報を対象とするかは、適宜変更可能である。

【0032】
上記のように取得された介入群データ及び安定群データから、欠損しているデータや採血時におけるデータ等は解析対象から除外し、介入群データについては470ポイント、安定群データについては894ポイントを用いた。

【0033】
以下の表は、これらのデータに基づいて算出された修正型早期警告スコアに基づいて求められる感度(Sensitivity)と特異度(Specificity)を示すものである。ここで感度及び特異度とは、特定の疾患について、その検査が疾患の有無をどの程度正確に判定できるかを示す定量的な指標である。
感度の欄と特異度の欄の右欄に記載されている数値は、信頼水準95%における感度又は特異度の信頼区間(Confidence Interval)である。各行において最右欄に記載されている数値は、感度と特異度の尤度比(Likelihood ratio)である。
【表2】
JP2019017998A_000004t.gif

【0034】
上表において、閾値を4.5(Cut off <4.5)とした事例を見てみると、MEWS < 4.5の時、安定群データの87.25%が含まれ、MEWS > 4.5の場合は介入群データの75.53%が含まれる。即ち、MEWSが4.5を超えていれば75%の場面で介入が必要と言える。
さらに、上表において、閾値を5.5(Cut off <5.5)とした事例を見てみると、MEWS < 5.5の時、安定群データの91.83%が含まれ、MEWS > 5.5の場合は介入群データの59.15%が含まれる。即ち、MEWSが5.5を超えていれば59%の場面で介入が必要と言える。
上述のように、修正型早期警告スコアは0(零)以上の整数として導出される値であるため、この解析結果から判断するに、修正型早期警告スコアに関する閾値を5に設定するのが妥当と判断される。
なお、この閾値は一具体例であり、被験者の疾患等によって変化しうるし、解析対象とする患者情報の範囲を変更することによって変化しうるため、本発明の実施における閾値はこれに限られない。

【0035】
上記のような手法は、ショックインデックスの閾値設定にも応用可能である。従って、個別に導出されたショックインデックスの閾値と修正型早期警告スコアの閾値とを組み合わせることにより、コンピュータ端末10は末期ゾーンTZを設定することができる。

【0036】
<治療介入予測スコアの構築について>
上述のように、第2変数については、修正型早期警告スコアに代えて治療介入予測スコアを用いることができる。
治療介入予測スコアに用いる変数の候補としては、患者の年齢、性別、既往歴等の背景データ、治療に用いている薬剤、鎮静・鎮痛の評価項目、計測器20によって取得できる患者情報、カメラ等によって撮影された画像を解析して得られる数値データ等が挙げられる。
これらの変数を、重症化した状態でのデータと安定期のデータで比較する。比較検討する方法としては、線形回帰分析、ロジスティック回帰分析、非線形回帰分析、機械学習等が適用できる。
本実施形態では、一具体例として、上記の閾値設定に用いた介入群データを「重症化した状態でのデータ」として扱い、安定群データを「安定期のデータ」として扱うことにする。

【0037】
これらデータ群において説明変数として用いられる拡張期血圧(ABPd)、平均血圧(ABPm)、収縮期血圧(ABPs)、年齢(Age)、体温(BT)、心拍数(HR)、呼吸数(RR)、性別(Sex)、及び酸素飽和度(SpO2)を解析することにより、互いの相関関係を求めた。なお、参考として早期警告スコア(EWS)の合計についても、上記の説明変数との相関関係を求めた。

【0038】
以下の表における各欄に記載された値は、各説明変数の相関関係を表すものであり、値が高いほど高い相関関係を有する。この例においては、拡張期血圧、平均血圧、収縮期血圧は互いに相関が強いため、治療介入予測スコアに関する変数選択から一部を外すことができる。本実施形態では、これらの中から拡張期血圧のみを用いて治療介入予測スコアを構築することにした。
【表3】
JP2019017998A_000005t.gif

【0039】
上記の介入群データについては治療介入予測スコアが100点であるものとして設定し、上記の安定群データについては治療介入予測スコアが0点であるものとして設定して、これらの連続変数に対する重回帰分析を行なった。その結果、年齢(Age)、拡張期血圧(ABPd)、体温(BT)、心拍数(HR)、呼吸数(RR)、及び酸素飽和度(SpO2)を変数とする以下の予測式を導出することができた。
【数1】
JP2019017998A_000006t.gif

【0040】
上式を用いた場合、治療介入予測スコア(IPS)の値が100を超えた時点又は100に近似した時点を治療介入のタイミング、即ち被験者が重症化したタイミングとして推定できる。コンピュータ端末10が上式を用いて治療介入予測スコアを算出する場合、その解は修正型早期警告スコアに比べて値が大きくなり、更に小数点以下の桁数についても求められる。従って、治療介入予測スコアを第2変数に用いた静的スコアリングモデル上におけるプロットパターンは、修正型早期警告スコアを第2変数に用いる場合に比べて経時的に細やかに変動する。従って、治療介入予測スコアを用いて被験者の重症化タイミングを推定する方が、修正型早期警告スコアを用いて推定するのに比べて、より精度の高い結果となる。修正型早期警告スコアの項目に加えて年齢の要素を取り入れているため、高齢者に対する感度、特異度が上がる事が予測され、実臨床における有用性が増すと思われる。
なお、上式における各変数の選択や予測式の内容については、解析対象とするデータを変更することにより変化しうるものであり、本発明の実施はこれに限られない。

【0041】
<本発明の変形例について>
ここまで実施形態に即して本発明を説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の目的が達成される限りにおける種々の変形、改良等の態様も含む。

【0042】
上記の実施形態において、図2に示すコンピュータ端末10の表示画面は、静的スコアリングモデルを表示するモデル表示部DR3の他に、患者属性表示部DR1、指標推移表示部DR2及び時間帯表示部DR4を含む例を図示したが、当該表示画面の実施例はこれに限られない。
例えば、モデル表示部DR3に相当する表示のみによって構成されてもよいし、図2に図示されない別の表示が成されてもよい。

【0043】
上記の実施形態における特定領域(末期ゾーンTZ)を設定する方法として、第1変数の閾値及び第2変数の閾値を個別に求めるように述べたが、本発明の実施はこれに限られない。
例えば、第1変数と第2変数とを関連付けて特定領域を設定する方法(第1変数と第2変数の双方を変数として用いる関数によって特定領域の閾値が導出される方式)を用いてもよい。

【0044】
本実施形態は以下の技術思想を包含する。
(1)複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、を含み、前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標である重症化推定装置。
(2)前記第1変数の導出に用いる患者情報と、前記第2変数の導出に用いる患者情報と、が少なくとも一種類について共通している(1)に記載の重症化推定装置。
(3)前記第1変数は、心拍数を収縮期血圧で除して導出される指標であり、前記第2変数は、心拍数、収縮期血圧、呼吸数、酸素飽和度及び体温に基づいて導出される指標である(2)に記載の重症化推定装置。
(4)前記第1変数は、心拍数を収縮期血圧で除して導出される指標であり、前記第2変数は、年齢、拡張期血圧、体温、心拍数、呼吸数及び酸素飽和度に基づいて導出される指標である(2)に記載の重症化推定装置。
(5)前記モデル生成手段は、前記被験者に係る患者情報のうち少なくとも一種類をキーとして前記データベースから複数の患者を検索し、検索された複数の患者に係る患者情報に基づいて前記静的スコアリングモデルにおける前記特定領域を定める(1)から(4)のいずれか一つに記載の重症化推定装置。
(6)複数の患者について経時的に取得された複数種類の患者情報を蓄積しているデータベースから、各患者が重症化した時点より前を少なくとも含む所定期間内に取得された患者情報を抽出して、抽出した患者情報から第1変数及び第2変数を導出し、導出した前記第1変数及び前記第2変数が縦軸及び横軸のそれぞれに対応している二次元モデルである静的スコアリングモデルを生成するモデル生成手段と、被験者である患者に関する複数種類の患者情報を単位時間ごとに取得し、取得した患者情報から前記第1変数と前記第2変数を導出して前記静的スコアリングモデルに順次プロットしていくスコアリング手段と、前記スコアリング手段によるプロットが前記静的スコアリングモデルにおける二次元領域の一部である特定領域に行われた時点のうち少なくとも一部を、前記被験者が重症化したタイミングとして推定する重症化推定手段と、をコンピュータに実行させるためのプログラムであり、前記第1変数と前記第2変数のうち少なくとも一方は、複数種類の患者情報を用いて導出される指標であることを特徴とする重症化推定プログラム。
【符号の説明】
【0045】
10 コンピュータ端末
20 計測器
30 患者
40 データベース
図面
【図1】
0
【図2】
1