Top > Search of International Patents > SURFACE-MODIFIED CARBON MATERIAL, AND METHOD FOR PRODUCING SURFACE-MODIFIED CARBON MATERIAL

SURFACE-MODIFIED CARBON MATERIAL, AND METHOD FOR PRODUCING SURFACE-MODIFIED CARBON MATERIAL

Foreign code F200010033
File No. K10514WO
Posted date Jan 31, 2020
Country WIPO
International application number 2019JP010720
International publication number WO 2019168206
Date of international filing Feb 28, 2019
Date of international publication Sep 6, 2019
Priority data
  • P2018-036704 (Mar 1, 2018) JP
Title SURFACE-MODIFIED CARBON MATERIAL, AND METHOD FOR PRODUCING SURFACE-MODIFIED CARBON MATERIAL
Abstract The present invention is a surface-modified carbon material which comprises graphene having a chemical modification group added to the surface thereof, and in which one-dimensional periodicity corresponding to multiple sites for the addition of the chemical modification group can be observed in a Fourier-transformed image of a scanning probe microscopic image of the surface of the graphene. The surface-modified carbon material according to the present invention has a band gap and therefore can be used as a sensor capable of electronically controling an operation or another electronic device.
Outline of related art and contending technology BACKGROUND ART
sp2 Is arranged in a honeycomb graphene carbon, its superior electric properties, mechanical properties, optical characteristics and thermal characteristics can be used in various applications has been expected. Graphene, from among high conductivity is used in the electronics field that is being considered. For this reason, the university or a research institute, corporation or the like associated with the graphene in the shape of the study are booming.
And a substance exhibiting metallic graphene, and is a zero band-gap semiconductor. Therefore, as it is of limited use as a material for electronics. However, the band gap in graphene can be introduced into a suitable, high-speed operation at room temperature and the field effect transistor of high performance, small size and high sensitivity to the sensor and enables the use of a molecule.
Therefore, the band gap in graphene is introduced a number of ways have been reported. For example, the doping of the graphene to electrons or holes from the support substrate, by plasma or ion lithography processing of graphene, microfabrication based on the SPM probe, and the chemically active species (carbon sp3) using the introduction of defects by chemical modification and the like.
Among these methods, the application of a chemically modified graphene, graphene to introduce the band gap of the addition, the organic group is added to the graphene electronic or chemical properties of the Fermi level by controlling the surface properties and has the advantage that it becomes possible to control. Chemical modification of graphene therefore been intensively studied.
In addition, chemical modification of graphene plane than that of the edge portion can be more easily chemically modified is known. Is carried out by chemical modification of graphene, the graphene in the plane of the position of application of the number of active chemical species in a portion of the control, to maintain the predetermined order becomes important. This is because, in a predetermined order while keeping the surface portion can be chemically modified, how the movement of the carrier, i.e. the advantages of the control can be realized in some cases is preferable.
First, in Patent Document 1 is, brought into contact with the fluid with the method disclosed in the present invention. In the present invention, the surface of the fluid in contact with the substrate, and the central portion of the at least one of an organic molecule having side arm is provided with a network. Then, silicon, and pyrolytic graphite (HOPG) or the like metal on the surface of the adsorbed molecule network formed as disclosed in the two-dimensional molecular sieve. Fig. 13 to, 6 of the carbon material 102 on the plane of the ring sequence of the basic skeleton of the organic compound 105a and the branch unit 105b to interact with the continuous two-dimensional structure formed according to the 100.
Then, Fig. 14 (a) the prior art according to Patent Document 2 is a schematic cross-sectional view. According to the prior art is Patent Document 2, stainless steel, ceramic or resin or the like for modifying the surface of the substrate 113 to form a carbonaceous film in the invention. That is, in Patent Document 2, sp3 and sp2 carbon atoms is bonded to the surface of the carbon comprising a carbon and an electrolyte membrane (6 112 a planar array of six-membered ring) including a hydrogen atom and an oxygen atom and a functional group, the surface of the carbonaceous film is chemically bonded to the organic component (graft chain 111) is modified with a carbonaceous film 110 has been disclosed.
(B) in Fig. 14 according to the prior art in Patent Document 3 are shown schematically. The electronic device 120 is, on the substrate edge is modified with the graphene film (6 122 a planar array of six-membered ring) serving as a channel, the channel 125 and the source electrode 124 and the drain electrode are electrically joined to have a structure. 120 Is an electronic device, the graphene film to the edge of the detection object detected species adsorption or species functional group bonding with the added 121, the edge of the graphene sensor is configured to be modified. Also, rather than at the edge of the graphene-like carbon material, a planar array surface 6 in the five membered ring on a chemical modification method, the chemical modifying group for a number of attempts have been made. (C) in Fig. 14 the surface of the graphite after chemical modification on a random, chemically modified STM probe are removed from the machine group, the carbon surface is exposed to a desired shape of a photograph showing the method. In this method, referred to as nano-shaving method.
Fig. 15 to, chemically modifying the surface of the carbon material as an NBD is added to the state shown schematically. In this case, the surface of the carbon material is added to a planar array of a 6 membered aryl to aryl group substitution reaction can be formed in a multilayer state in the cascade. As a result, with respect to the carbon material, a large number of chemical modifying group density in the plane of the modified or additional control is not achieved in the position.
In this way, in the conventional method, the addition of chemically active species of the graphene to occur randomly, especially in the plane of the position of application of the control (sp3 carbon position) is that it is virtually impossible. In addition, to precisely control the ratio of modification of the appendages may be difficult. In order to solve such a problem for some studies have been reported.
For example, in Non-Patent Document 1, a single-layer graphene on Ru (0001) to, a metal cyano methyl radical and the graphene due to the interaction, can be selectively added to the position have been reported. However, this method has a cycle (pitch) of the dimensionality cannot be controlled.
In addition, in Non-Patent Document 2, a long-chain alkyl groups having the aryl diazonium salts include an array of self-assembly on the graphene, the electrochemical reduction of aryl radicals can be generated, added to the graphene have been reported to occur. Then, the possibility of periodic modification are discussed.
Non-Patent Document 1 and Non-Patent Document 2 are of the method, an attractive approach for periodic chemical modifications may be made. However, the carbon material both for precise control of chemical surface modification which is far from. In the case where the chemical modifying group is added to the additional position control with high accuracy, and poor control of the rate would be modified.
On the other hand, in non-patent document 3, or on a solid substrate using a chemical reaction in the solution, a graphene nanoribbon (GNR) to the bottom-up method for synthesizing graphene nanoribbons or has been reported. In this method, the design of the appropriate size from the precursor can be obtained the advantage that the graphene or GNR. Therefore, research has been actively performed in recent years the method respectively. However, electronic or magnetic properties are largely dependent on the edge structure, the graphene itself and the strength is increased. In addition, the ribbon width can be broadened to a certain degree or more is impossible.
On the other hand, the organic molecule self-assembly by physical adsorption of a monomolecular film of graphite or graphene is formed using a method of forming a nano pattern on the surface have been reported. For example, in Non-Patent Document 4, at the interface of the graphite and the organic solvent, straight-chain alkanes self-assemble by the lamellar type may be formed of a single molecular film has been reported. However, in this Non-Patent Document 4, while controlling the adding position is performed periodically such as chemical modification is not disclose any concept.
Non-Patent Document 5 and in Non-Patent Document 6, the newly synthesized using derivatives (DBA) annulene 12, physical adsorption of organic molecules in the solid-liquid interface by using the self-assembled monolayer is formed, the surface of the graphite or graphene nano pattern forming methods have been reported in a simple manner. DBA derivative is an organic solvent and the graphite or graphene and the alignment of the molecules at the interface between the formed honeycomb-type STM was confirmed by observation.
In Non-Patent Document 7, Non-Patent Document 5 described above using a technique of Non-Patent Document 6, 6 of the periodic structure of the four-fold symmetry is formed on the graphite after, applying a chemical modification to the experimental results have been reported.
In non-patent document 8, the sputtering method using SiC a method of manufacturing graphene have been reported. In non-patent document 9, a method of forming graphene on a SiO substrate have been reported.
In non-patent document 10, with respect to the graphene, carbon sp3 is introduced into the defect in the case where the one-dimensional periodically, to control the band gap of the graphene that the prediction is calculated for the attempted method.
In non-patent document 11, the surface of the graphene or graphite, 3,5-tert - di (TBD) , or, 4-(NBD) nitrobenzene diazonium chloride is added to the chemical modification methods have been reported. That in Fig.13, added to the surface of the carbon material layer of an aryl group, the probe of STM can be partially removed, to expose the carbon surface of the rectangular area shown in a technique (see Fig. 14 (c)). And the exposed area of the rectangle is used as a template, two molecular self-assembly and pentacontanoic block has been shown a method of forming. In this prior art, the self-assembly on the surface of the carbon material is pentacontanoic, several blocks adjacent to the alignment state may be observed, in a larger area size, are arranged in a mosaic block in. In this way, the non-Patent Document 11 is used by the STM probe and the nano-shaving method, the electronic device can be used, an adduct of a predetermined sequence (the chemical modifying group) is formed in the state was not achieved.
Finally, in Non-Patent Document 12, defects in the graphene by Raman spectrum analysis of the different excitation energy can be quantitatively analyzed and reported.
Scope of claims (In Japanese)[請求項1]
 グラフェン、グラファイト、ガラス状炭素膜、及び膜状熱分解炭素からなる群より選ばれた炭素材料の少なくとも一部の表面に多数の化学修飾基が備えられた表面修飾炭素材料であって、
 前記表面に対する走査型プローブ顕微鏡像のフーリエ変換像に、前記化学修飾基の多数の付加位置に対応した一次元周期性が観察され得ることを特徴とする表面修飾炭素材料。

[請求項2]
 前記一次元周期性に対応するピッチが2~10nmである請求項1に記載の表面修飾炭素材料。

[請求項3]
前記炭素材料がグラフェンであって、前記表面に対するラマンスペクトルにおけるGバンドの強度IgとDバンドの強度IdとのId/Igが0.2~5.0である請求項1または2に記載の表面修飾炭素材料。

[請求項4]
前記炭素材料がグラファイトであって、前記表面に対するラマンスペクトルにおけるGバンドの強度IgとDバンドの強度IdとのId/Igが0.01~0.11である請求項1または2に記載の表面修飾炭素材料。

[請求項5]
 前記化学修飾基はアリール基である請求項1~4のいずれか1項に記載の表面修飾炭素材料。

[請求項6]
 前記アリール基は下記式(1)で表わされる請求項5に記載の表面修飾炭素材料。
[化1]
(省略)
式(1)において、R 1、R 2及びR 3は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アリール基、OR、COOH、SOOH、SOONH 2、NO 2、COOR、SiR 3、H、F、Cl、Br、I、OH、NH 2、NHR、NR 2、CN、CONHRまたはCOHである(Rはアルキル基、アルケニル基、アルキニル基もしくはアリール基またはそれらのハロゲン置換体である)。

[請求項7]
 炭素材料と、薄膜と、溶媒が備えられた有機化合物-炭素材料複合体であって、前記炭素材料は、グラフェン、グラファイト、ガラス状炭素膜、及び膜状熱分解炭素からなる群より選ばれ、前記薄膜は有機化合物の周期性集合体によって構成され、前記炭素材料の表面が前記薄膜によって被覆され、前記溶媒は非極性有機溶媒または低極性有機溶媒であって、前記溶媒は前記薄膜上に配置されたことを特徴とする有機化合物-炭素材料複合体。

[請求項8]
 前記薄膜は、炭素数15~80の直鎖のアルカンまたは炭素数10~80の直鎖のアルカン誘導体が並列配置された前記有機化合物の周期性集合体が備えられた請求項7に記載の有機化合物-炭素材料複合体。

[請求項9]
 前記有機化合物の周期性集合体は多角形状の空孔を有する請求項7に記載の有機化合物-炭素材料複合体。

[請求項10]
 炭素材料の表面に有機化合物を用いて薄膜を生成させる第1の工程、および前記薄膜をマスクとして化学修飾用化合物を前記炭素材料の表面に反応させる第2の工程を有する表面修飾炭素材料の製造方法であって、
 前記有機化合物は、炭素数15~80の直鎖のアルカンまたは炭素数10~80の直鎖のアルカン誘導体であり、
 前記炭素材料はグラフェン、グラファイト、ガラス状炭素膜、及び膜状熱分解炭素からなる群より選択し、
 前記第1の工程において、前記有機化合物を炭素材料の表面に自己集合させて、一次元周期性を示す薄膜状の周期性集合体である薄膜を生成し、
 前記第2の工程において、前記周期性集合体の間隙の位置で化学修飾用化合物を前記炭素材料の表面に反応させることを特徴とする表面修飾炭素材料の製造方法。

[請求項11]
 前記直鎖のアルカンまたは直鎖のアルカン誘導体は、下記式(2)で表される化合物である請求項10に記載の表面修飾炭素材料の製造方法。
[化2]
(省略)
 式(2)において、Xは、H、CH 3、CF 3、CH=CH 2、C≡CH、アリール基、F、Cl、Br、I、OH、SH、NH 2、COHまたはCOOHを表わし、Yは、CH 2、CF 2、CH=CH、C≡C、芳香族炭化水素から2個の水素原子を除去して形成される2価の原子団、O、S、NH、CO、COO、CONH、NHCOまたはNHCHXを表わし、Zは、H、CH 3、アリール基、OH、SH、NH 2、COH、COOH、COOX、CONH、NHCOXまたはNHCHXを表わし、nは、式(2)中の炭素原子数が、アルカンにおいては15~80、アルカン誘導体においては10~80となる条件を満たす整数である。

[請求項12]
 前記薄膜はラメラ型の単分子膜である請求項10または11に記載の表面修飾炭素材料の製造方法。

[請求項13]
 前記化学修飾用化合物は下記式(3)で表わされる化合物である請求項10~12のいずれか1項に記載の表面修飾炭素材料の製造方法。
[化3]
(省略)
 式(3)において、R 1、R 2及びR 3は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アリール基、OR、COOH、SOOH、SOONH 2、NO 2、COOR、SiR 3、H、F、Cl、Br、I、OH、NH 2、NHR、CN、CONHRまたはCOHであり(Rはアルキル基、アルケニル基、アルキニル基またはアリール基である。)、Zはハロゲン原子、BF 4、BR 4またはPF 6である(R 4はアルキル基、アルケニル基、アルキニル基もしくはアリール基またはそれらのハロゲン置換体である。)。

[請求項14]
 作用極、カウンター電極、参照電極及び電解質水溶液を備えた電気化学セルを用いて化学修飾用化合物を炭素材料に電気化学的に反応させて製造する表面修飾炭素材料の製造方法であって、
 前記作用極として前記炭素材料を使用し、前記炭素材料はグラフェン、グラファイト、ガラス状炭素膜、及び膜状熱分解炭素からなる群より選ばれ、
 前記電解質水溶液として、前記化学修飾用化合物を含む水溶液を使用し、
 前記作用極と前記電解質水溶液との間に、周期的な自己集合性を示す化合物を含む液媒体を配置し、前記電解質水溶液と前記液媒体とは相互に非混和性であることを特徴とする表面修飾炭素材料の製造方法。

[請求項15]
 前記周期的な自己集合性を示す化合物は、炭素数15~80の直鎖のアルカンまたは炭素数10~80の直鎖のアルカン誘導体である請求項14に記載の表面修飾炭素材料の製造方法。

[請求項16]
 前記直鎖のアルカンまたは直鎖のアルカン誘導体は、下記式(2)で表される化合物である請求項15に記載の表面修飾炭素材料の製造方法。
[化4]
(省略)
 式(2)において、Xは、H、CH 3、CF 3、CH=CH 2、C≡CH、アリール基、F、Cl、Br、I、OH、SH、NH 2、COHまたはCOOHを表わし、Yは、CH 2、CF 2、CH=CH、C≡C、芳香族炭化水素から2個の水素原子を除去して形成される2価の原子団、O、S、NH、CO、COO、CONH、NHCOまたはNHCHXを表わし、Zは、H、CH 3、アリール基、OH、SH、NH 2、COH、COOH、COOX、CONH、NHCOXまたはNHCHXを表わし、nは、式(2)中の炭素原子数が、アルカンにおいては15~80、アルカン誘導体においては10~80となる条件を満たす整数である。

[請求項17]
 前記液媒体における前記アルカンまたは直鎖のアルカン誘導体の濃度が1マイクロモル/L以上である請求項15または16に記載の表面修飾炭素材料の製造方法。

[請求項18]
 前記周期的な自己集合性を示す化合物は、デヒドロベンゾ[12]アヌレン誘導体である請求項14に記載の表面修飾炭素材料の製造方法。

[請求項19]
 前記液媒体は、前記周期的な自己集合性を示す化合物を非極性有機溶媒、または低極性有機溶媒に溶解して得られる請求項14~18のいずれか1項に記載の表面修飾炭素材料の製造方法。

[請求項20]
 前記非極性有機溶媒または低極性有機溶媒は、脂肪酸、アルキル置換ベンゼン、炭素数20未満のアルカン、アルカノール、ジアルキルエーテル、ハロゲン化炭化水素または芳香族炭化水素である請求項19に記載の表面修飾炭素材料の製造方法。

[請求項21]
 前記電解質水溶液における前記化学修飾用化合物の濃度は0.2~10.0ミリモル/Lである請求項14~20のいずれか1項に記載の表面修飾炭素材料の製造方法。

[請求項22]
 前記化学修飾用化合物は下記式(3)で表わされる化合物である請求項10~21のいずれか1項に記載の表面修飾炭素材料の製造方法。
[化5]
(省略)
 式(3)において、R 1、R 2及びR 3は、それぞれ独立に、アルキル基、アルケニル基、アルキニル基、アリール基、OR、COOH、SOOH、SOONH 2、NO 2、COOR、SiR 3、H、F、Cl、Br、I、OH、NH 2、NHR、CN、CONHRまたはCOHであり(Rはアルキル基、アルケニル基、アルキニル基またはアリール基である。)、Zはハロゲン原子、BF 4、BR 4またはPF 6である(R 4はアルキル基、アルケニル基、アルキニル基もしくはアリール基またはそれらのハロゲン置換体である。)。

[請求項23]
 グラフェン、グラファイト、ガラス状炭素膜、及び膜状熱分解炭素からなる群より選ばれた炭素材料の少なくとも一部の表面に多数の化学修飾基が備えられた表面修飾炭素材料であって、
 前記表面に対する走査型プローブ顕微鏡像のフーリエ変換像に、前記化学修飾基の多数の付加位置に対応した二次元周期性が備えられ、
 前記表面を5~15nm 2の面積を有する一つの区画によって分画した場合に、化学修飾基が存在する区画の総数と全ての区画数との比率が70%以上であることを特徴とする表面修飾炭素材料。

[請求項24]
 前記比率が90%以上である請求項23に記載の表面修飾炭素材料。

[請求項25]
 請求項1~6、23または24のいずれか1項に記載の表面修飾炭素材料を含む電界効果トランジスタ。

[請求項26]
 請求項1~6、23または24のいずれか1項に記載の表面修飾炭素材料を含むセンサ。

[請求項27]
 請求項1~6、23または24のいずれか1項に記載の表面修飾炭素材料を含む発光素子。

[請求項28]
 請求項1~6、23または24のいずれか1項に記載の表面修飾炭素材料を含む触媒。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
  • KATHOLIEKE UNIVERSITEIT LEUVEN
  • Inventor
  • TAHARA Kazukuni
  • TOBE Yoshito
  • ISHIKAWA TORU
  • KUBO Yuki
  • DE FEYTER Steven Willy Nicolas
  • HIRSCH Brandon Edward
  • LI Zhi
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
Reference ( R and D project ) PRESTO Molecular technology and creation of new functions AREA
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close