TOP > 外国特許検索 > Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy

Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy 実績あり

外国特許コード F110005324
整理番号 E06702WO
掲載日 2011年8月31日
出願国 アメリカ合衆国
出願番号 53764403
公報番号 20060128124
公報番号 7220658
出願日 平成17年6月6日(2005.6.6)
公報発行日 平成18年6月15日(2006.6.15)
公報発行日 平成19年5月22日(2007.5.22)
優先権データ
  • 2002US-60433843 (2002.12.16) US
  • 2002US-60433844 (2002.12.16) US
  • 2003WO-US21918 (2003.7.15) WO
  • 2005US-10537644 (2005.6.6) US
発明の名称 (英語) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy 実績あり
発明の概要(英語) (US7220658)
Lateral epitaxial overgrowth (LEO) of non-polar a-plane gallium nitride (GaN) films by hydride vapor phase epitaxy (HVPE) results in significantly reduced defect density.
特許請求の範囲(英語) [claim1]
1. A method of performing a lateral epitaxial overgrowth of a planar, non-polar, a-plane gallium nitride (GaN) film, comprising:
(a) patterning a mask deposited on a substrate;
and(b) performing a lateral epitaxial overgrowth of the planar, non polar, a-plane GaN film off the substrate using hydride vapor phase epitaxy, wherein the planar, non polar, a-plane GaN film nucleates only on portions of the substrate not covered by the patterned mask, the planar, non polar, a-plane GaN film grows vertically through openings in the patterned mask, and the planar, non polar, a-plane GaN film then spreads laterally above the patterned mask and across the substrate's surface.
[claim2]
2. The method of claim 1, wherein the lateral epitaxial overgrowth utilizes growth pressures of approximately atmospheric pressure (760 Torr) or below, and a carrier gas containing a fraction of hydrogen.
[claim3]
3. The method of claim 1, wherein the lateral epitaxial overgrowth reduces threading dislocation densities in the planar, non polar, a-plane GaN film.
[claim4]
4. The method of claim 1, wherein the substrate comprises sapphire.
[claim5]
5. The method of claim 1, wherein the patterned mask is comprised of a metallic material.
[claim6]
6. The method of claim 1, wherein the patterned mask is comprised of a dielectric material.
[claim7]
7. The method of claim 1, wherein the patterned mask is a silicon dioxide (SiO2) mask containing apertures or stripes allowing access to the substrate underlying the mask.
[claim8]
8. The method of claim 1, wherein the patterning step comprises: depositing a silicon dioxide (SiO2) film on the substrate;
patterning a photoresist layer on the silicon dioxide film;etching away any portions of the silicon dioxide film exposed by the patterned photoresist layer;removing remaining portions of the photoresist layer;
and
cleaning the substrate.
[claim9]
9. The method of claim 1, wherein the substrate is coated with a template layer of GaN, aluminum nitride (AlN), aluminum gallium nitride (AlGaN), or other thin film.
[claim10]
10. The method of claim 1, wherein the substrate is a free-standing a-plane GaN, a-plane aluminum nitride (AlN), or a-plane aluminum gallium nitride (AlGaN) wafer.
[claim11]
11. The method of claim 1, wherein the substrate is coated with a nucleation layer deposited at either low temperatures or at the growth temperature.
[claim12]
12. A free-standing a-plane GaN film or substrate manufactured using the method of claim 1.
[claim13]
13. A device manufactured using the method of claim 1.
[claim14]
14. The method of claim 1, wherein the the planar, non polar, a-plane GaN film then spreads laterally above the patterned mask and across the substrat's surface in a manner that creates sharply vertical sidewalls.
[claim15]
15. The method of claim 2, wherein the growth pressure is less than 300 Torr.
[claim16]
16. The method of claim 2, wherein the growth pressure ranges from 5 to 100 Torr.
[claim17]
17. The method of claim 2, wherein the carrier gas is predominantly hydrogen.
[claim18]
18. The method of claim 2, wherein the carrier gas comprises a mixture of hydrogen and nitrogen, argon, or helium.
[claim19]
19. The device of claim 13, wherein the device is a laser diode, light-emitting diode or transistor.
[claim20]
20. A lateral epitaxial overgrowth of a planar, non-polar, a-plane gallium nitride (GaN) film off a substrate, wherein the lateral epitaxial overgrowth is created using a process comprising:
(a) patterning a dielectric mask deposited on a substrate;
and(b) performing a lateral epitaxial overgrowth of the planar, non polar, a-plane GaN film off the substrate using hydride vapor phase epitaxy, wherein the planar, non polar, a-plane GaN film nucleates only on portions of the substrate exposed by the patterned dielectric mask, the planar, non polar, a-plane GaN film grows vertically through openings in the patterned dielectric mask, and the planar, non polar, a-plane GaN film then spreads laterally above the patterned dielectric mask and across the substrate's surface.
[claim21]
21. The lateral epitaxial overgrowth of claim 20, wherein the planar, non polar, a-plane GaN film then spreads laterally above the patterned dielectric mask and across the substate's surface in a manner that creates sharply vertical sidewalls.
  • 発明者/出願人(英語)
  • HASKELL BENJAMIN A
  • CRAVEN MICHAEL D
  • FINI PAUL T
  • DENBAARS STEVEN P
  • SPECK JAMES S
  • NAKAMURA SHUJI
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
国際特許分類(IPC)
参考情報 (研究プロジェクト等) ERATO NAKAMURA Inhomogeneous Crystal AREA
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。

PAGE TOP

close
close
close
close
close
close