TOP > 外国特許検索 > Method and device for precisely resisting and moving high load

Method and device for precisely resisting and moving high load

外国特許コード F110005505
整理番号 N021-05US1
掲載日 2011年9月7日
出願国 アメリカ合衆国
出願番号 55638409
公報番号 20100060105
公報番号 7834519
出願日 平成21年9月9日(2009.9.9)
公報発行日 平成22年3月11日(2010.3.11)
公報発行日 平成22年11月16日(2010.11.16)
国際出願番号 JP2005009229
国際公開番号 WO2005114825
国際出願日 平成17年5月20日(2005.5.20)
国際公開日 平成17年12月1日(2005.12.1)
優先権データ
  • 特願2004-150134 (2004.5.20) JP
  • 2005WO-JP09229 (2005.5.20) WO
  • 2007US-11596757 (2007.9.19) US
発明の名称 (英語) Method and device for precisely resisting and moving high load
発明の概要(英語) (US7834519)
A precise and high load resistance moving method to perform fine movement positioning of the moving body, by fixing a piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element placed on a base, and deforming the piezoelectric element by driving the piezoelectric element with drive pulses to move the wedge-shaped moving element along a first axis in which the wedge-shaped moving element drives into or away from a moving body to move the moving body along a second axis in upward and downward direction relative to the base.
Also, a precise and high load resistance moving device including a wedge-shaped moving element, a pulse source, and a moving body vertically movable in upward or downward direction relative to the base.
特許請求の範囲(英語) [claim1]
1. A precise and high load resistance moving method comprising: (a) fixing a first piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, and fixing second and third piezoelectric elements which generate shear deformations in a depth direction of the page surface to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) moving the wedge-shaped moving element is laterally moved on the base by rapidly deforming and driving the first piezoelectric element, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction to the page surface, whereby a fine movement positioning of the moving bodies in the vertical direction is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the second and third piezoelectric elements, whereby a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim2]
2. A precise and high load resistance moving method comprising: (a) fixing a piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, and fixing a layered piezoelectric element in which a piezoelectric element which generates a shear deformation along an inclined surface and a piezoelectric element which generates a shear deformation in a depth direction of the page surface are bonded, to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) moving the wedge-shaped moving element on the base by rapidly deforming and driving the piezoelectric element fixed to the bottom surface of the wedge-shaped moving element which is placed on the base and has the triangular shape having the two inclined surfaces on the upper side in the cross section, and the piezoelectric element which generates the shear deformation along the inclined surface, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction of the page surface, whereby a fine movement positioning of the moving bodies is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the piezoelectric element arranged on the upper inclined surface and generates the shear deformation in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim3]
3. A precise and high load resistance moving method wherein a precise and high load resistance moving device in which a first piezoelectric element which generates a shear deformation is fixed to a bottom surface of a wedge-shaped moving element which is placed on a first base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, second and third piezoelectric elements which generate shear deformations in a depth direction of the page surface is fixed to each upper inclined surface of both sides of the wedge-shaped moving element, the wedge-shaped moving element is laterally moved on the first base by rapidly deforming and driving the first piezoelectric element, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction of the page surface, a fine movement positioning of the moving bodies is performed in the vertical direction so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the second and third piezoelectric elements, a fine movement positioning of the moving bodies in the depth direction of the page surface, comprising placing the device on a second base through a fourth piezoelectric element which generates a shear deformation and which is fixed to a bottom surface of the first base, and moving the precise and high load resistance moving device on the second base in the horizontal direction by rapidly deforming and driving the fourth piezoelectric element, whereby a positioning of the moving bodies in xyz directions is performed.
[claim4]
4. The precise and high load resistance moving method according to claim 3, wherein the second and third piezoelectric elements are layered piezoelectric elements in which a piezoelectric element which generates a shear deformation in an inclined surface direction and a piezoelectric element which generates a shear deformation in the depth direction of the page surface are bonded.
[claim5]
5. A precise and high load resistance moving method according to claim 1, wherein the second piezoelectric element is formed of a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in an inclined surface direction is bonded to a piezoelectric element which generates a shear deformation in a direction along the third axis and the fourth piezoelectric element is formed of a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in the inclined surface direction which is bonded to a piezoelectric element which generates a shear deformation in the direction along the third axis.
[claim6]
6. A precise and high load resistance moving device comprising: (a) a piezoelectric element which generates a shear deformation is provided to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape in a cross section, and a piezoelectric element which generates a shear deformation in a depth direction of the page surface which is provided to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) means in which by rapidly deforming and driving the piezoelectric element of the bottom surface of the wedge-shaped moving element, the wedge-shaped moving element is moved on the base, and by striking or extracting the wedge-shaped moving element to/from the two moving bodies of the right and left movable in the vertical direction and the depth direction of the page surface, a fine movement positioning of moving bodies in the lateral and vertical directions is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and further comprising means in which by rapidly deforming and driving the piezoelectric elements arranged to the upper inclined surface and generate the shear deformation in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim7]
7. A precise and high load resistance moving device comprising: (a) a piezoelectric element which generates a shear deformation is provided to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape in a cross section, and a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in an inclined surface direction and a piezoelectric element which generates a shear deformation in a depth direction of the page surface are bonded which is provided to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) means in which by rapidly deforming and driving the piezoelectric elements which generate the shear deformation in the inclined surface direction out of the piezoelectric element of the bottom surface of the wedge-shaped moving element and the layered piezoelectric elements fixed to the upper inclined surfaces, the wedge-shaped moving element is moved on the base, and by striking or extracting the wedge-shaped moving element to/from two moving bodies of the right and left movable in the vertical direction and the depth direction of the page surface, a fine movement positioning of moving bodies in the lateral and vertical directions is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and further comprising means in which out of the layered piezoelectric elements arranged to the upper inclined surfaces, by rapidly deforming and driving the piezoelectric elements which generate the shear deformations in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
  • 発明者/出願人(英語)
  • KAWAKATSU HIDEKI
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
国際特許分類(IPC)
参考情報 (研究プロジェクト等) CREST Nano Factory and Process Monitoring for Advanced Information Processing and Communication AREA
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。

PAGE TOP

close
close
close
close
close
close