Top > Search of International Patents > Method and device for precisely resisting and moving high load

Method and device for precisely resisting and moving high load

Foreign code F110005505
File No. N021-05US1
Posted date Sep 7, 2011
Country United States of America
Application number 55638409
Gazette No. 20100060105
Gazette No. 7834519
Date of filing Sep 9, 2009
Gazette Date Mar 11, 2010
Gazette Date Nov 16, 2010
International application number JP2005009229
International publication number WO2005114825
Date of international filing May 20, 2005
Date of international publication Dec 1, 2005
Priority data
  • P2004-150134 (May 20, 2004) JP
  • 2005WO-JP09229 (May 20, 2005) WO
  • 2007US-11596757 (Sep 19, 2007) US
Title Method and device for precisely resisting and moving high load
Abstract (US7834519)
A precise and high load resistance moving method to perform fine movement positioning of the moving body, by fixing a piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element placed on a base, and deforming the piezoelectric element by driving the piezoelectric element with drive pulses to move the wedge-shaped moving element along a first axis in which the wedge-shaped moving element drives into or away from a moving body to move the moving body along a second axis in upward and downward direction relative to the base.
Also, a precise and high load resistance moving device including a wedge-shaped moving element, a pulse source, and a moving body vertically movable in upward or downward direction relative to the base.
Scope of claims [claim1]
1. A precise and high load resistance moving method comprising: (a) fixing a first piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, and fixing second and third piezoelectric elements which generate shear deformations in a depth direction of the page surface to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) moving the wedge-shaped moving element is laterally moved on the base by rapidly deforming and driving the first piezoelectric element, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction to the page surface, whereby a fine movement positioning of the moving bodies in the vertical direction is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the second and third piezoelectric elements, whereby a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim2]
2. A precise and high load resistance moving method comprising: (a) fixing a piezoelectric element which generates a shear deformation, to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, and fixing a layered piezoelectric element in which a piezoelectric element which generates a shear deformation along an inclined surface and a piezoelectric element which generates a shear deformation in a depth direction of the page surface are bonded, to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) moving the wedge-shaped moving element on the base by rapidly deforming and driving the piezoelectric element fixed to the bottom surface of the wedge-shaped moving element which is placed on the base and has the triangular shape having the two inclined surfaces on the upper side in the cross section, and the piezoelectric element which generates the shear deformation along the inclined surface, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction of the page surface, whereby a fine movement positioning of the moving bodies is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the piezoelectric element arranged on the upper inclined surface and generates the shear deformation in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim3]
3. A precise and high load resistance moving method wherein a precise and high load resistance moving device in which a first piezoelectric element which generates a shear deformation is fixed to a bottom surface of a wedge-shaped moving element which is placed on a first base having wall surfaces to both sides and has a triangular shape having two inclined surfaces on the upper side in a cross section, second and third piezoelectric elements which generate shear deformations in a depth direction of the page surface is fixed to each upper inclined surface of both sides of the wedge-shaped moving element, the wedge-shaped moving element is laterally moved on the first base by rapidly deforming and driving the first piezoelectric element, and striking or extracting the wedge-shaped moving element to/from two moving bodies movable in a vertical direction to the base and in a depth direction of the page surface, a fine movement positioning of the moving bodies is performed in the vertical direction so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and, by rapidly deforming and driving the second and third piezoelectric elements, a fine movement positioning of the moving bodies in the depth direction of the page surface, comprising placing the device on a second base through a fourth piezoelectric element which generates a shear deformation and which is fixed to a bottom surface of the first base, and moving the precise and high load resistance moving device on the second base in the horizontal direction by rapidly deforming and driving the fourth piezoelectric element, whereby a positioning of the moving bodies in xyz directions is performed.
[claim4]
4. The precise and high load resistance moving method according to claim 3, wherein the second and third piezoelectric elements are layered piezoelectric elements in which a piezoelectric element which generates a shear deformation in an inclined surface direction and a piezoelectric element which generates a shear deformation in the depth direction of the page surface are bonded.
[claim5]
5. A precise and high load resistance moving method according to claim 1, wherein the second piezoelectric element is formed of a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in an inclined surface direction is bonded to a piezoelectric element which generates a shear deformation in a direction along the third axis and the fourth piezoelectric element is formed of a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in the inclined surface direction which is bonded to a piezoelectric element which generates a shear deformation in the direction along the third axis.
[claim6]
6. A precise and high load resistance moving device comprising: (a) a piezoelectric element which generates a shear deformation is provided to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape in a cross section, and a piezoelectric element which generates a shear deformation in a depth direction of the page surface which is provided to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) means in which by rapidly deforming and driving the piezoelectric element of the bottom surface of the wedge-shaped moving element, the wedge-shaped moving element is moved on the base, and by striking or extracting the wedge-shaped moving element to/from the two moving bodies of the right and left movable in the vertical direction and the depth direction of the page surface, a fine movement positioning of moving bodies in the lateral and vertical directions is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and further comprising means in which by rapidly deforming and driving the piezoelectric elements arranged to the upper inclined surface and generate the shear deformation in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
[claim7]
7. A precise and high load resistance moving device comprising: (a) a piezoelectric element which generates a shear deformation is provided to a bottom surface of a wedge-shaped moving element which is placed on a base having wall surfaces to both sides and has a triangular shape in a cross section, and a layered piezoelectric element in which a piezoelectric element which generates a shear deformation in an inclined surface direction and a piezoelectric element which generates a shear deformation in a depth direction of the page surface are bonded which is provided to each upper inclined surface of both sides of the wedge-shaped moving element, and
(b) means in which by rapidly deforming and driving the piezoelectric elements which generate the shear deformation in the inclined surface direction out of the piezoelectric element of the bottom surface of the wedge-shaped moving element and the layered piezoelectric elements fixed to the upper inclined surfaces, the wedge-shaped moving element is moved on the base, and by striking or extracting the wedge-shaped moving element to/from two moving bodies of the right and left movable in the vertical direction and the depth direction of the page surface, a fine movement positioning of moving bodies in the lateral and vertical directions is performed so that a total of potential energy of the two moving bodies in the vertical direction is not changed, and further comprising means in which out of the layered piezoelectric elements arranged to the upper inclined surfaces, by rapidly deforming and driving the piezoelectric elements which generate the shear deformations in the depth direction of the page surface, a fine movement positioning of the moving bodies in the depth direction of the page surface is also performed.
  • Inventor, and Inventor/Applicant
  • KAWAKATSU HIDEKI
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
IPC(International Patent Classification)
Reference ( R and D project ) CREST Nano Factory and Process Monitoring for Advanced Information Processing and Communication AREA
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close