TOP > 外国特許検索 > Dynamic mode AFM apparatus

Dynamic mode AFM apparatus

外国特許コード F110005513
整理番号 N021-13WO
掲載日 2011年9月7日
出願国 アメリカ合衆国
出願番号 99007009
公報番号 20110055983
公報番号 8151368
出願日 平成21年4月8日(2009.4.8)
公報発行日 平成23年3月3日(2011.3.3)
公報発行日 平成24年4月3日(2012.4.3)
国際出願番号 JP2009057158
国際公開番号 WO2009139238
国際出願日 平成21年4月8日(2009.4.8)
国際公開日 平成21年11月19日(2009.11.19)
優先権データ
  • 特願2008-124891 (2008.5.12) JP
  • 2009WO-JP57158 (2009.4.8) WO
発明の名称 (英語) Dynamic mode AFM apparatus
発明の概要(英語) (US8151368)
A dynamic mode AFM apparatus for allowing high-speed identification of atoms of a sample surface, which comprises a scanner for performing three-dimensional scanning; an AC signal of a resonance frequency in a mode with flexural vibration of a cantilever; an AC signal of a second frequency which is lower than the frequency of the flexural vibration; a probe-sample distance modulated with the second frequency; a detector for detecting fluctuation of the resonance frequency; a detector for detecting vibration of the cantilever; and a detector for detecting a fluctuation component which is contained in a detected signal by detecting the resonance frequency fluctuation and synchronized with a modulation signal of the probe-sample distance, wherein an inclination of the resonance frequency against the probe-sample distance is obtained from the strength and polarity of the fluctuation component.
特許請求の範囲(英語) [claim1]
1. A dynamic mode AFM apparatus comprising: (a) a scanner for performing three-dimensional relative scanning of a cantilever and a sample;
(b) a means for generating an AC signal of a resonance frequency in a mode with flexural vibration of the cantilever;
(c) a means for exciting the flexural vibration of the cantilever with the resonance frequency;
(d) a means for generating an AC signal of a second frequency which is lower than the frequency of the flexural vibration;
(e) a means for modulating a probe-sample distance of the cantilever with the second frequency;
(f) a means for detecting fluctuation of the resonance frequency;
(g) a means for detecting vibration of the cantilever; and
(h) a means for detecting a fluctuation component which is contained in a detected signal by the means for detecting the resonance frequency fluctuation and synchronized with a modulation signal of the probe-sample distance,
(i) wherein an inclination of the resonance frequency against the probe-sample distance is obtained from strength and polarity of the fluctuation component.
[claim2]
2. The dynamic mode AFM apparatus according to claim 1, wherein the probe-sample distance is automatically controlled so that the inclination of the resonance frequency against the probe-sample distance becomes zero.
[claim3]
3. The dynamic mode AFM apparatus according to claim 2, wherein a frequency in a mode with flexural vibration of a lower order is used as the second frequency, that is different from the frequency in the mode with flexural vibration.
[claim4]
4. The dynamic mode AFM apparatus according to claim 3, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and frequency detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim5]
5. The dynamic mode AFM apparatus according to claim 3, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and phase detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim6]
6. The dynamic mode AFM apparatus according to claim 3, wherein a signal source to generate an AC signal of a frequency that is a constant frequency around the resonance frequency of the mode or that is controlled to slowly follow the resonance frequency of the mode is used as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and the means for detecting the fluctuation of the resonance frequency is configured by detecting a phase of displacement or speed of the cantilever against the signal.
[claim7]
7. The dynamic mode AFM apparatus according to claim 2, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and frequency detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim8]
8. The dynamic mode AFM apparatus according to claim 2, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and phase detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim9]
9. The dynamic mode AFM apparatus according to claim 2, wherein a signal source to generate an AC signal of a frequency that is a constant frequency around the resonance frequency of the mode or that is controlled to slowly follow the resonance frequency of the mode is used as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and the means for detecting the fluctuation of the resonance frequency is configured by detecting a phase of displacement or speed of the cantilever against the signal.
[claim10]
10. The dynamic mode AFM apparatus according to claim 1, wherein a frequency in a mode with flexural vibration of a lower order is used as the second frequency, that is different from the frequency in the mode with flexural vibration.
[claim11]
11. The dynamic mode AFM apparatus according to claim 10, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and frequency detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim12]
12. The dynamic mode AFM apparatus according to claim 10, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and phase detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim13]
13. The dynamic mode AFM apparatus according to claim 10, wherein a signal source to generate an AC signal of a frequency that is a constant frequency around the resonance frequency of the mode or that is controlled to slowly follow the resonance frequency of the mode is used as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and the means for detecting the fluctuation of the resonance frequency is configured by detecting a phase of displacement or speed of the cantilever against the signal.
[claim14]
14. The dynamic mode AFM apparatus according to claim 1, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and frequency detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim15]
15. The dynamic mode AFM apparatus according to claim 1, wherein a self-excited oscillation circuit which oscillates at the resonance frequency in the mode is configured as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and phase detection is used as the means for detecting the fluctuation of the resonance frequency.
[claim16]
16. The dynamic mode AFM apparatus according to claim 1, wherein a signal source to generate an AC signal of a frequency that is a constant frequency around the resonance frequency of the mode or that is controlled to slowly follow the resonance frequency of the mode is used as the means for generating the AC signal of the resonance frequency in the mode with flexural vibration of the cantilever, and the means for detecting the fluctuation of the resonance frequency is configured by detecting a phase of displacement or speed of the cantilever against the signal.
  • 発明者/出願人(英語)
  • KAWAKATSU HIDEKI
  • KOBAYASHI DAI
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
国際特許分類(IPC)
参考情報 (研究プロジェクト等) CREST Nano Factory and Process Monitoring for Advanced Information Processing and Communication AREA
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。

PAGE TOP

close
close
close
close
close
close