FISHEYE IMAGE DATA CREATION PROGRAM AND LAI COMPUTATION PROGRAM
外国特許コード | F150008299 |
---|---|
整理番号 | S2014-1323-N0 |
掲載日 | 2015年4月10日 |
出願国 | 世界知的所有権機関(WIPO) |
国際出願番号 | 2013JP059456 |
国際公開番号 | WO 2014122800 |
国際出願日 | 平成25年3月29日(2013.3.29) |
国際公開日 | 平成26年8月14日(2014.8.14) |
優先権データ |
|
発明の名称 (英語) | FISHEYE IMAGE DATA CREATION PROGRAM AND LAI COMPUTATION PROGRAM |
発明の概要(英語) | The fisheye image data creation program according to one aspect of the present invention causes a computer to execute a step for reading-in three-dimensional forest point group data, a step for creating three-dimensional reference point data, a step for calculating at least any two amplitude data of forest point data constituting the forest point group data using the reference point data as a reference, a step for creating two-dimensional fisheye image data on the basis of the two amplitude data of the forest point data, and a step for calculating an LAI on the basis of the fisheye image data. |
|
|
|
|
国際特許分類(IPC) |
|
指定国 |
National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LA LC LK LR LS LT LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW EAPO: AM AZ BY KG KZ RU TJ TM EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR OAPI: BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
日本語項目の表示
発明の名称 | 魚眼画像データ作成プログラム及びLAI算出プログラム |
---|---|
発明の概要 | 本発明の一観点にかかる魚眼画像データ作成プログラムは、コンピュータに、三次元の森林点群データを読み込むステップ、三次元の基準点データを作成するステップ、基準点データを基準として、森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、魚眼画像データに基づいてLAIを求めるステップ、を実行させる。 |
特許請求の範囲 |
[請求項1] コンピュータに、 三次元の森林点群データを読み込むステップ、 三次元の基準点データを作成するステップ、 前記基準点データを基準として、前記森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、 前記森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、を実行させるための、魚眼画像データ作成プログラム。 [請求項2] コンピュータに、 三次元の森林点群データを読み込むステップ、 三次元の基準点データを作成するステップ、 前記基準点データを基準として、前記森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、 前記森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、前記魚眼画像データに基づいてLAIを求めるステップ、を実行させるための、魚眼画像データ作成プログラム。 |
明細書 |
明 細 書 発明の名称 : 魚眼画像データ作成プログラム及びLAI算出プログラム 技術分野 [0001] 本発明は魚眼画像データ作成プログラム、LAI(Leaf Area Index)算出プログラム、LAI算出装置に関する。 背景技術 [0002] 森林環境を評価する基準として、葉面積指数(Leaf Area Index、以下「LAI」という。)が広く知られている。LAIとは単位面積当たりの葉の面積をいい、森林内の光量を量る指標として用いることが可能である。すなわち、森林内の任意の場所においてLAIを算出できれば、それらの場所において、葉の量をどの程度削減すればどの程度の光量を増加させることができるか等、森林管理の際に必要な樹木の伐採量を定量的に行うことが可能となる。 [0003] 一般に、LAIは、魚眼カメラを用いて森林内の地面から真上に向けて撮影した画像から森林内への入光量を算出することによって求められる。具体的には、魚眼カメラによって撮影された画像を二値化し、影となるピクセル数を基に画像上で光量を得る。そして、森林内の光量が森林床へ到達する量をポワソン分布と仮定して推定式を用いてLAIを得る(例えば下記非特許文献1参照)。 [0004] これまでの葉面積算出方法に関するものとして、例えば下記特許文献1に航空機レーザーによるデータ解析技術が、下記特許文献2に広角レンズ及び電子式撮影素子を用いる方法が、また、下記特許文献3に光学的植生指数センサによって測定する方法が開示されている。 [0005] また、下記非特許文献2には、地上レーザーを用いたLAIを算出した研究が開示されている。 先行技術文献 特許文献 [0006] 特許文献1 : 特開2008-111725号公報 特許文献2 : 特開2007-171033号公報 特許文献3 : 特開2011-133451号公報 非特許文献 [0007] 非特許文献1 : MacAuthur&Horn,Ecology,50(5),1969 非特許文献2 : Seidel et al.,2012,Agricultural and Forest Meteology,154-155,pp.1-8 発明の概要 発明が解決しようとする課題 [0008] 上記特許文献1に記載の解析技術は、航空機レーザーデータ(上空から照射されたレーザーデータ)を用い、レーザーの「反射強度」から葉面積を算出する方法を用いている。しかしながら、航空機レーザーによって高密度でデータを取得したとしても、森林内へのレーザーの透過率は低く、林内の正確な状況を把握できているとする保証がない。また、「反射強度」は照射角度によって異なるため、レーザーを照射した際の航空機の位置や対象とする森林の位置によって反射強度が異なることになり、反射強度だけで推定するには限界がある。 [0009] また、上記特許文献2に記載の技術は、従来の方法における、魚眼カメラ等で撮影する際の天気がLAIを推定する結果に大きく影響を及ぼす課題を克服するために「電子式撮像素子」を導入するものである。しかしながら、上記特許文献2に記載の技術では、「電子式撮像素子」を新たに装置構成として追加しなければならないという課題がある。また、魚眼カメラ等を用いて実際の撮影を行うものであるため、天候や時間によって二値化の処理において主観的な判断が加わり、大きく差が生じてしまうといった課題もある。 [0010] また、上記特許文献3に記載の技術は、上記特許文献2に記載の技術をさらに進めて「光学的植生指数を算出するセンサ」を独自に開発したものである。しかしながら、上記特許文献2と同様、その独自のセンサを利用しないといけないといった課題がある。また、魚眼カメラ等を用いて実際の撮影を行うものであるため、天候や時間によって二値化の処理において主観的な判断が加わり、大きく差が生じてしまうといった課題もある。 [0011] また、上記非特許文献2には、確かに地上レーザーを用いてLAIを算出する技術であるが、計算のためすべての点群をVoxelに変換した後にLAIを算出しているため、1つの画像を得るのに4時間程度かかるため非常に低速であり、簡便な方法とはいえない。またその画像作成手順に関して詳細は殆ど明らかにされておらず、実施ができる程度に開示されたものとは言えない。 [0012] そこで、本発明は、上記課題を鑑み、より簡便、高速、精密で天候に左右されにくい魚眼画像データ作成方法及び魚眼画像データ作成プログラムを提供し、さらにこれに基づきより簡便、高速、精密なLAI算出方法及びLAI算出プログラムを提供することを目的とする。 課題を解決するための手段 [0013] 上記課題を解決するための本発明の一観点に係る魚眼画像データ作成プログラムは、コンピュータに、三次元の森林点群データを読み込むステップ、三次元の基準点データを作成するステップ、基準点データを基準として、森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、を実行させる。 [0014] また、本発明の他の一観点に係る魚眼画像データ作成プログラムは、コンピュータに、三次元の森林点群データを読み込むステップ、三次元の基準点データを作成するステップ、基準点データを基準として、森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、魚眼画像データに基づいてLAIを求めるステップ、を実行させる。 発明の効果 [0015] 以上、本発明により、より簡便、高速、精密で天候に左右されにくい魚眼画像データ作成方法及び魚眼画像データ作成プログラムを提供し、さらにこれに基づきより簡便、高速、精密なLAI算出方法及びLAI算出プログラムを提供することができる。 図面の簡単な説明 [0016] [図1] 実施形態に係るLAI算出方法におけるステップの概略を示す図である。 [図2] 森林点群データの取得方法のイメージ図である。 [図3] 取得された森林点群データのイメージ図である。 [図4] 基準点データを作成する際に用いる仮想空間のイメージ図である。 [図5] 偏角データを求める際の計算のイメージ図である。 [図6] 射影変換処理のイメージを示す図である。 [図7] 球の表面上に森林点群をすべて配置させるイメージを示す図である。 [図8] 森林点群データが存在する領域、森林点群が配置されていない領域を判断する場合の説明図である。 [図9] 作成された魚眼画像データのイメージを示す図である。 [図10] 中心から所定の範囲の円領域のみを抽出し、LAIの計算対象とさせる処理のイメージ図である。 [図11] AccuPARによるLAIと魚眼レンズによるLAIを比較した結果を示す図である。 [図12] レーザーセンサによる森林点群データを用いて求めたLAIとAccuPARによるLAIとを比較した結果を示す図である。 [図13] 魚眼レンズを用いて定めたLAIと、レーザーセンサにより求めた森林点群データを用いて定めたLAIとの関連を示す図である。 発明を実施するための最良の形態 [0017] 以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態の具体的な例示にのみ限定されるわけではない。 [0018] 本実施形態は、LAI算出方法に関する。本実施形態にかかるLAI算出方法(以下「本方法」という。)は(1)三次元の森林点群データを読み込むステップ、(2)三次元の基準点データを作成するステップ、(3)基準点データを基準として、前記森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップ、(4)森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成するステップ、(5)魚眼画像データに基づいてLAIを求めるステップ、を有する。図1に、本方法によるステップの概略を示しておく。 [0019] 本方法は、限定されるわけではないが、たとえばコンピュータのハードディスク等の記録媒体に上記各ステップを実行することのできるプログラムを記録し、これを実行させることで実現させることが容易であり好ましい。以下、コンピュータによるデータ処理を前提に説明する。 [0020] まず、本方法の(1)三次元の森林点群データを読み込むステップは、文字通り、三次元の森林点群データを読み込むステップである。このステップは、たとえばコンピュータのハードディスク等の記録媒体に予め記録しておき、必要に応じて三次元の森林点群データをメモリ等の記録媒体に読み込むことが典型的な一態様である。このようにすることで後述の処理を開始することができるようになる。ここで「三次元の森林点群データ」とは、森や林等の樹木が存在する領域(以下「森林等」という。)において樹木等の存在を表現する座標情報を含む点データ(森林点データ)の集合をいう。すなわち、森林点データが存在する位置には樹木の幹や葉等が存在することを意味する。なお、三次元の森林点群データは、取得できる限りにおいて限定されるわけではないが、より詳細な方法によって取得することが好ましく、例えば森林等の地表近くにレーザーセンサ等の三次元データを取得することができる装置を配置し作動させることより取得することができる。この場合における森林点群データの取得方法のイメージ図を図2に、取得された森林点群データのイメージ図を図3に示しておく。ここで三次元の森林点群データは、限定されるわけではないが、x座標、y座標、z座標に関する情報を含んだバイナリデータであることが好ましい。このようにすることで、後のステップにおいて簡便な処理を行うことができるようになる。 [0021] 本法における(2)三次元の基準点データを作成するステップは、魚眼画像データを作成する際の中心となる基準点を決定するステップである。すなわち基準点データは後に作成される魚眼画像データの中心となる点である。 [0022] ここで基準点データは、上記三次元の森林点群データと同じ座標系で表現されたものであることが好ましく、限定されるわけではないが、x座標、y座標、z座標に関する情報を含んだバイナリデータであることが好ましい。 [0023] また、本ステップにおいて、LAI算出の際に地表面からの高さ等を考慮しようとする場合、基準点の地表面からの高さ等を特定するために、DTM(Digigtal Terrain Model)を新たに作成することが好ましい。 [0024] 点群データには地表面からの反射とそれ以外からの反射等、予め分類されている訳ではない。よって地表面DTMを作成する。DTMとは森林点群データから作成される地表面データであり、滑らかとなるように処理が施されている。このデータを求めることで基準点の地表面からの高さを精度よく決定することができる。このDTMは、森林点群データにおけるxy座標面を複数の領域に分割し、その各々の領域(セル)において最小値を求め、それら各領域に隣接するセルと比較し、最小値であるものだけ残した表面を作成する。 作成された表面上で、各セルを中心に隣接するセル(例えば、3x3または5x5範囲)でより低いセル値がある場合は、より低い隣接セル値を中心セルに代入する(最小値を抽出する画像フィルター)。この処理を全域で行う。最小値フィルターを施したDTMと元のDTMとを比較することで、変動しない(隣接セルから最小値の代入がされていない)セルだけを判別する。変動してない場所のみからTIN(Triangular Irregular Network)を作成し、さらにTINからラスターへ変換する。同様の処理をDSMにも適用する。DSMでも隣接セルとの値を比較し、最大値を中心セルに代入する最大値フィルターを施す。最大値フィルターと元のDSMを比較することで、変動しないセルだけを判別する。判別されたセルは樹木の頂点を表す。DSMから得られた樹木頂点と位置は、立木密度を簡易的に算出することに優れているため、基準点を定めるための有効な情報となる。 [0025] また限定されるわけではないが、基準点データを作成する際すなわち基準点を決定する際は、例えば情報処理装置に接続される表示装置に仮想空間を表示させ、使用者に仮想空間上の所望の位置を選択させ、当該位置を基準点とする処理を行わせることで基準点データを作成することができる。このようにすることで、森林点群データを取得しておけば、任意の位置における魚眼画像データを作成することが可能となるとともに、その場におけるLAIを求めることができるようになる。この場合のイメージ図を図4に示しておく。 [0026] また本方法における(3)基準点データを基準として、森林点群データを構成する森林点データの少なくともいずれかの二つの偏角データを求めるステップは、本方法において重要なステップである。この処理により三次元の森林点群に基づき二次元の魚眼画像を作成することが容易となる。本処理は、極座標系、より具体的には球座標系に変換する座標変換処理であるということもできる。 [0027] 本ステップにおいて求める二つの偏角データは、限定されるわけではないが、基準点と処理対象となる森林点とを結ぶ線のxy平面への射影線がxy平面上においてx軸(又はy軸)となす角である水平角θに対応する水平角データと、上記射影線がz軸(又はxy平面)となす角である仰角φ二対応する仰角データであることが好ましい。このようにすることで、極座標、より具体的には球座標での表現となり、魚眼画像の形状である円に対応した処理が容易となる。 [0028] また本ステップにおいて、二つの偏角はどのような方法によって求めても良いが、二つの偏角を求めるに際し、基準点と森林店との間の距離Dを求めておくことが好ましい。距離Dを求めることで、容易に偏角を求めることが可能となるとともに正確な球座標表現が可能となる。この場合の計算のイメージ図を図5に示しておく。 [0029] また本ステップでは、上記処理によって二つの偏角データを求めた後、(4)森林点データの二つの偏角データに基づき二次元の魚眼画像データを作成する。本ステップでは、まず、射影変換処理を行い二次元の射影画像データを作成する。具体的には、上記森林点群データの各森林点データに対し二つの偏角データを用いて射影変換処理を行う。このイメージ図を図6に示しておく。なお、本図では、説明の観点から正射影の変換処理を示しているが、その他の射影変換として、等立体角射影、等距離射影を用いても良い。 [0030] またこの射影変換処理において、又は、その前において、基準点と各森林点データの距離Dを、いずれも同じ値(例えば1)となるよう処理しておくことが好ましい。このようにすることで、処理対象となる森林点群すべてを所定の半径(例えば1)の範囲内に射影することが可能となり、レンズを実際に使用した魚眼画像に違い射影画像データとなる。なお、射影変換処理前に基準点からの距離Dをいずれも同じ値(例えば1)にする場合、イメージとしては、当該値の球の表面上に森林点群をすべて配置させる処理と同視することができる。この場合のイメージ図を図7に示しておく。 [0031] 本ステップでは、この射影画像データをそのまま魚眼画像データとすることも可能であるが、さらにこの射影画像データの粗さ調整を行うことが好ましい。具体的には、射影画像を複数の領域に切りわけ、各領域内に射影された森林点群が配置されている場合は当該領域が森林点群データが存在する領域、森林点群が配置されていない場合は当該領域が森林点群データが存在しない領域と判断する。この場合のイメージを図8に示すとともに、図9に、作成された魚眼画像データのイメージを示しておく。この結果、魚眼画像データを作成することができる。この処理を行うと、所望の精度のLAIを自在に求めることが可能となり、処理時間の短縮と精度とのバランスを図ることができるようになる。なお、魚眼画像データは、各画素データが白又は黒の0、1の二値のいずれかとなっているものであることがLAIをより簡便に求めることができる観点から好ましいが、距離をより明確にするため、LAI算出前においては例えば距離に応じて明暗の重み付けを行うことも好ましい(例えば、基準点から近い距離にある森林点を表す場合はより暗く、基準点から遠い距離にある森林点を表す場合はより明るくすることも好ましい)。 [0032] また、上記の粗さ調整の処理によると、森林点群データ取得の際に生じる誤差を除去することもできる。この点について具体的に説明すると、森林点群データ取得は、レーザーセンサ等を用いた三次元の位置計測装置によって取得されることが好ましいが、この場合、当該装置はレーザー光を一定角度間隔(例えばα)で回転させながら森林点群データを取得していく。すなわち、レーザー光の発生源から測定点までの距離をrとした場合、この距離rと回転角度間隔αを乗じた値が分解能の限界となるため、誤差を低く抑えるためには射影画像データの粗さがこの分解能の限界よりも粗くなっている必要がある。より具体的には、射影画像データの粗さは、回転角度間隔αの二次元射影成分よりも大きくしておく必要があり、より好ましくはこの回転角度間隔αの二次元射影成分の2倍以上である。このようにすることで、誤差を低減させることができる。 [0033] 以上、本ステップにより、二次元の魚眼画像データを得ることができる。 [0034] なお本ステップにおいては、森林点の有無の判断処理を必要な範囲のみに限定して処理を行うようにしておいてもよい。具体的には、所定の距離、所定の角度の少なくともいずれかを定め、この所定の範囲内にある森林点群データのみを処理の対象とするようにしても良い。このようにすることで、不必要な森林点群データの処理を避けることが可能となるだけでなく、他の装置が測定することのできる範囲に合わせることで、当該装置が測定したLAI値と、同様の範囲に合わせて算出したLAIとを比較することが可能となる。 [0035] 上記処理の具体的な例としては、例えば、所定の距離の範囲内とする場合、所定の距離の情報を含む距離範囲データを作成し、基準点から所定の距離以上となっている点データを処理対象から除外する処理とすることが好ましい。 [0036] また、所定の角度の範囲内の場合は、所定の角度の情報を含む角度範囲データを作成し、基準点から仰角が所定の角度以上となっている点データを処理対象から除外する処理とすることが好ましい。 [0037] また本方法では、(5)魚眼画像データに基づいてLAIを求めるステップを有する。上記のステップで作成された魚眼画像データは、二次元の円形状の画像データであって、この円の中の森林点データを二値化し、円中において森林点が占める面積を算出することでLAIを算出することができる。LAIの算出方法としては、公知の手法により実現することができ、限定されるわけではないが、例えば上記非特許文献1に基づいて行うことができる。 [0038] また本ステップにおいて、魚眼画像データにおいて、所定の領域のみをLAIの計算対象とさせる処理を行わせることも好ましい。より具体的には、中心から所定の範囲の円領域のみを抽出し、LAIの計算対象とさせる処理が好ましい。このようにすると、所定の仰角の領域におけるLAIを計算することが可能となり、仰角に制限のある他のLAI測定装置との結果を対比することができる。この場合のイメージ図を図10に示しておく。 [0039] 以上、本方法により、より簡便、高速、精密で天候に左右されにくい魚眼画像データ作成方法及び魚眼画像データ作成プログラムを提供し、さらにこれに基づきより簡便、高速、精密で天候に左右されにくいLAI算出方法及びLAI算出プログラムを提供することができる。 実施例 [0040] 上記方法を検証するため実証実験を行った。具体的には、様々な樹種で構成されているニュージーランドのクライストチャーチにあるHagley Parkにおいて、魚眼レンズを用いて実際に魚眼画像を撮影し、その魚眼画像を読み込みLAIを求める一方、レーザーセンサ装置を用いて森林点群データを取得し、上記実施形態に記載の方法に従い二次元魚眼画像データを作成しLAIを求めた。 [0041] なお、現地検証用データとして、AccuPAR(Dragon Device社製)を用い、測定した同じ場所と開けた場所の2箇所でデータを同時に取得し測定日の天候を補正した光強度を取得し、LAIを計算した。 [0042] まず、AccuPARによるLAIと魚眼レンズによるLAIを比較した結果を図11に示す。本結果によると、魚眼レンズを用いてLAIを求めた場合、相関係数R=0.79であったものの、LAIのレンジが狭く、AccuPARのLAI評価より過小評価してしまう傾向があった。 [0043] 一方、本実施例にかかるレーザーセンサによる森林点群データを用いて求めたLAIとAccuPARによるLAIとを比較した場合、本方法により求めたLAIはレンジが広く、LAIの様々な状況を捉えることが可能であることを確認した。また相関係数Rも0.81と優れていることを確認した。この結果を図12に示しておく。 [0044] またここで魚眼レンズを用いて定めたLAIと、レーザーセンサにより求めた森林点群データを用いて定めたLAIとの関連について図13に示しておく。この結果、LAIが高い場所では魚眼レンズを用いた評価では値が飽和する傾向があるものの、本方法ではLAIが高い場所であっても精度よく算出できていることが確認できた。これはLAIが高い場合、二値化の判断基準において測定者の主観等の要素が入ってきてしまうことと考えられる。 [0045] なお、本実施例に係る方法では、森林点群データ約300万点を処理対象としているが、この処理は45秒程度で完了することができ、非常に短時間で行うことができることも確認した。(コメント:実際の処理点数と、処理時間について言及をお願いできますでしょうか。) [0046] 以上、本実施例により、より簡便、高速、精密で天候に左右されにくい魚眼画像データ作成方法及び魚眼画像データ作成プログラムを提供し、さらにこれに基づきより簡便、高速、精密で天候に左右されにくいLAI算出方法及びLAI算出プログラムを提供することができることを確認した。 産業上の利用可能性 [0047] 本発明は、魚眼画像データ作成方法及びLAI算出方法並びに魚眼画像データ作成プログラム及びLAI算出プログラムとして産業上の利用可能性がある。 |
『 FISHEYE IMAGE DATA CREATION PROGRAM AND LAI COMPUTATION PROGRAM 』に関するお問合せ
- 国立大学法人千葉大学 学術研究推進機構 産業連携研究推進ステーション 知財管理移転室
- URL: http://www.chiba-u.ac.jp/
-
E-mail:
- Address: 〒263-8522 千葉県千葉市稲毛区弥生町1-33
- TEL: 043-290-2920
- FAX: 043-290-3519