TOP > 外国特許検索 > INFORMATION-PROCESSING DEVICE, INFORMATION-PROCESSING METHOD, PROGRAM, AND NON-TEMPORARY STORAGE MEDIUM

INFORMATION-PROCESSING DEVICE, INFORMATION-PROCESSING METHOD, PROGRAM, AND NON-TEMPORARY STORAGE MEDIUM

外国特許コード F160008889
整理番号 (S2015-0015-N0)
掲載日 2016年10月25日
出願国 世界知的所有権機関(WIPO)
国際出願番号 2016JP051909
国際公開番号 WO 2016117698
国際出願日 平成28年1月22日(2016.1.22)
国際公開日 平成28年7月28日(2016.7.28)
優先権データ
  • 特願2015-011853 (2015.1.23) JP
発明の名称 (英語) INFORMATION-PROCESSING DEVICE, INFORMATION-PROCESSING METHOD, PROGRAM, AND NON-TEMPORARY STORAGE MEDIUM
発明の概要(英語) The information-processing device includes: a first calculation unit for calculating similarity between the data to be processed in a first data set composed of a plurality of data and a query as the data to be searched; a specification unit for specifying, for each of the data to be processed, a second data set composed of some data in the first data set; a second calculation unit for calculating a criterion for each of the data to be processed from the second data set specified by the specification unit; and a third calculation unit for calculating a score for each of the data to be processed by using the similarity calculated by the first calculation unit and the criterion calculated by the second calculation unit.
従来技術、競合技術の概要(英語) BACKGROUND ART
K-nearest neighbor algorithm is a simple implementation even though the classification and information retrieval to be effective in many classification systems and information retrieval system used. However, a high-dimensional space is a set of data independent of the existing (for example data of a number of attributes when expressed as a vector), k in the vicinity of the other data (referred to as a hub) data frequently appears, to reduce the performance of the k-nearest neighbor algorithm as a result. The hub of the phenomenon is, (see non-patent document 1) by Radovanovic et al., the most recently discovered phenomenon relating to the high dimensionality of the data. On the other hand, the inventors '(global) centering', that is, the origin of the data set by moving average (), k-nearest neighbor algorithm can reduce the influence of a hub in which the presenter (see Non-Patent Document 2). The hub is located in the vicinity of the average of the data set and the data, the centering hub is effective to reduce.
  • 出願人(英語)
  • ※2012年7月以前掲載分については米国以外のすべての指定国
  • INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION RESEARCH ORGANIZATION OF INFORMATION AND SYSTEMS
  • 発明者(英語)
  • HARA Kazuo
  • SUZUKI Ikumi
国際特許分類(IPC)
指定国 National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JP KE KG KN KP KR KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG

PAGE TOP

close
close
close
close
close
close