CELL SORTING METHOD AND FLOW CYTOMETRY AND CELL SORTER USING SAME
外国特許コード | F170009273 |
---|---|
整理番号 | IP02P004 |
掲載日 | 2017年10月31日 |
出願国 | 世界知的所有権機関(WIPO) |
国際出願番号 | 2016JP077645 |
国際公開番号 | WO 2017163463 |
国際出願日 | 平成28年9月20日(2016.9.20) |
国際公開日 | 平成29年9月28日(2017.9.28) |
優先権データ |
|
発明の名称 (英語) | CELL SORTING METHOD AND FLOW CYTOMETRY AND CELL SORTER USING SAME |
発明の概要(英語) | [Problem] To provide an automatable cell acquisition technique by which a plurality of cells can be simultaneously analyzed while reducing the frequencies of false positives and false negatives. [Solution] A cell sorter or flow cytometer comprising a flow passage provided with a plurality of microwells, an introduction passage capable of introducing a liquid, said liquid containing a plurality of target cells, into the flow passage, a data acquisition part acquiring data from the target cells housed in the microwells, a selective taking-out means capable of selectively taking out the target cells, said target cells being in the microwells, from the microwells on the basis of the data acquired by the data acquisition part, and a target cell collection part capable of collecting the target cells selectively taken out by the selective taking-out means, characterized in that: the microwells can house the target cells and a photodegradable gel; and the selective taking-out means is a degrading light-irradiation part capable of irradiating the photodegradable gel, said photodegradable gel being in a microwell housing a target cell to be taken out, with light having a wavelength at which the photodegradable gel degrades. |
特許請求の範囲(英語) |
[claim1] 1. The passage which possesses the plural micro wells and, The liquid which contains the plural suffering inspection bodies, in the aforementioned passage the introduction possible introduction road and, The information acquisition section which acquires information from the plural suffering inspection bodies which are received to the aforementioned plural micro wells and, The suffering inspection body inside one micro well is removed from inside the particular micro well selectively, on the basis of the information which the aforementioned information acquisition section acquires, possible selective removal expedient and, The suffering inspection body which is removed selectively by the aforementioned selective removal expedient the collection possible suffering inspection body collection section Being the cell sorter or flow sight meter which it possesses, The aforementioned plural micro wells, the suffering inspection body and the disassembly characteristic gel are receipt possible, The aforementioned selective removal expedient, is the disassembly processing section which administers the processing which the particular disassembly characteristic gel disassembles vis-a-vis the disassembly characteristic gel inside the micro well where the suffering inspection body which it should you remove is kept, The way the cell sorter or flow sight meter which is formed. [claim2] 2. The aforementioned passage is plane, the aforementioned plural micro wells below forming the particular passage, are provided in the wall, the cell sorter or flow sight meter of claim 1 statement. [claim3] 3. The aforementioned disassembly characteristic gel, is the photolysis characteristic gel, The aforementioned disassembly processing section light of the wave length which the aforementioned photolysis characteristic gel disassembles is the lighting possible optical lighting section, claim the cell sorter or flow sight meter of 1 or 2 statements. [claim4] 4. As for the aforementioned information acquisition section, At one time it is acquisition possible at one time concerning acquisition or the aforementioned plural all micro wells the aforementioned information from the aforementioned plural micro wells, in micro every well concerning those of 2 or more inside acquisition and the plural micro wells, either of the claim 1-3 the cell sorter or flow sight meter of one section statement. [claim5] 5. As for the aforementioned information acquisition section, Vis-a-vis the aforementioned plural micro wells, the information source wave which becomes the source of the aforementioned information which it should acquire the lighting possible information source wave lighting section and, The aforementioned information source wave lighting section the occasion where the aforementioned information source wave was irradiated vis-a-vis the aforementioned plural micro wells, the information reception section which receives the aforementioned information which can occur from the aforementioned plural micro wells It possesses, either of the claim 1-4 the cell sorter or flow sight meter of one section statement. [claim6] 6. Is the aforementioned information source wave lighting section the aforementioned information source wave lighting possible in micro every well as a first feature?; As a second feature, those of 2 or more among the plural micro wells it is lighting possible at one time?; Or, the aforementioned plural all micro wells it is lighting possible at one time as a third feature; In case of the aforementioned first feature and the aforementioned second feature, scanning the aforementioned plural micro well everything, it can irradiate, the cell sorter or flow sight meter of claim 5 statement. [claim7] 7. The aforementioned information source wave lighting section the information source wave of plural kinds is output enable according to the number of analytical items, claim the cell sorter or flow sight meter of 5 or 6 section statements. [claim8] 8. The aforementioned information source wave which is irradiated from the aforementioned information source wave lighting section is light, the aforementioned disassembly characteristic gel is the photolysis characteristic gel, at the same time, the aforementioned disassembly processing section, differs from the wave length of the light where when it is the lighting possible optical lighting section, as for wave length of particular light, the aforementioned photolysis characteristic gel disassembles the light of the wave length which the aforementioned photolysis characteristic gel disassembles, either of the claim 5-7 the cell sorter or flow sight meter of one section statement. [claim9] 9. The aforementioned optical lighting section and the aforementioned information source wave lighting section, are the identical illuminant, The aforementioned identical illuminant becomes light of the wave length which the aforementioned photolysis characteristic gel disassembles and the source of the aforementioned information which it should acquire, the aforementioned wave length which the aforementioned photolysis gel disassembles light of the wave length which differs and, change lighting possibly it is constituted, the cell sorter or flow sight meter of claim 8 statement. [claim10] 10. As for the aforementioned cell sorter or flow sight meter, -description above information acquire section with acquire do description above information automatic operation analyze do automatic operation analyze expedient possess be good, Furthermore, in order to administer the processing which the particular gel disassembles in the disassembly characteristic gel inside the micro well where the suffering inspection body where acquisition is desired on the basis of the analytical result due to indication of the user or aforementioned automatic analytical expedient, is received, the selective removal control means which control the aforementioned selective removal expedient Furthermore it possesses, either of the claim 1-9 the cell sorter or flow sight meter of one section statement. [claim11] 11. Either of the claim 1-10 it is the cell sorter or for flow sight meter of one section statement, the micro fluid device which has the aforementioned passage. [claim12] 12. Either of the claim 1-10 it is the cell sorter or for flow sight meter of one section statement, the liquid which contains the material which can form the aforementioned disassembly characteristic gel. [claim13] 13. The filling up process which in the passage which possesses the plural micro wells, lets flow the liquid which contains the suffering inspection body, fills up the aforementioned suffering inspection body inside the aforementioned micro well and, The description above the analytical process which analyzes the aforementioned suffering inspection body which fills up after the filling up process and inside the aforementioned micro well and, The description above after the analytical process, the acquisition process which removes the aforementioned suffering inspection body Being the suffering inspection body collection method of including, The aforementioned liquid contains, the first component and the aforementioned first component the second component which differs and, At the same time the aforementioned first component, the basic framework is the organism compatibility polymer and possessing the part which it can connect with the aforementioned second component, At the same time the aforementioned second component, the basic framework is the organism compatibility polymer and possessing the second section which it can connect with the aforementioned first component, The case of the aforementioned analytical process, the gel where the aforementioned first component and the aforementioned second component build a bridge with the connection formation of the aforementioned part and the aforementioned second section, is a state where it is formed inside the aforementioned micro well, The aforementioned first component and/or the aforementioned second component furthermore has had the disassembly characteristic part, Regarding the aforementioned acquisition process, by the fact that disassembly processing is done, making the aforementioned disassembly characteristic part disassemble, it disassembles the aforementioned gel, removes the aforementioned suffering inspection body, suffering inspection body collection method. [claim14] 14. The aforementioned part is azide, the aforementioned second section is alkyne, suffering inspection body collection method of claim 13 statement. |
|
|
|
|
国際特許分類(IPC) |
|
指定国 |
(WO2017163463) National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JP KE KG KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW EAPO: AM AZ BY KG KZ RU TJ TM EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG |
日本語項目の表示
発明の名称 | セルソーティング方法、並びにこれを利用したフローサイトメトリー及びセルソーター |
---|---|
発明の概要 | 【課題】 偽陽性や偽陰性の頻度を低減させつつ複数の細胞を同時に解析可能であり且つ自動化が可能な細胞取得技術の提供。 【解決手段】 複数のマイクロウェルを有する流路と、複数の被検細胞を含有する液を、前記流路に導入可能な導入路と、前記複数のマイクロウェルに収納された複数の被検細胞から情報を取得する情報取得部と、前記情報取得部が取得した情報に基づき、一のマイクロウェル内の被検細胞を当該マイクロウェル内から選択的に取り出し可能な選択取り出し手段と、前記選択取り出し手段により選択的に取り出された被検細胞を回収可能な被検細胞回収部とを有するセルソーター又はフローサイトメーターであって、前記複数のマイクロウェルが、被検細胞及び光分解性ゲルを収納可能であり、前記選択取り出し手段が、取り出されるべき被検細胞が保持されたマイクロウェル内の光分解性ゲルに対し、当該光分解性ゲルが分解する波長の光を照射可能な分解光照射部であることを特徴とするセルソーター又はフローサイトメーター。 |
特許請求の範囲 |
[請求項1] 複数のマイクロウェルを有する流路と、 複数の被検体を含有する液を、前記流路に導入可能な導入路と、 前記複数のマイクロウェルに収納された複数の被検体から情報を取得する情報取得部と、 前記情報取得部が取得した情報に基づき、一のマイクロウェル内の被検体を当該マイクロウェル内から選択的に取り出し可能な選択取り出し手段と、 前記選択取り出し手段により選択的に取り出された被検体を回収可能な被検体回収部と を有するセルソーター又はフローサイトメーターであって、 前記複数のマイクロウェルが、被検体及び分解性ゲルを収納可能であり、 前記選択取り出し手段が、取り出されるべき被検体が保持されたマイクロウェル内の分解性ゲルに対し、当該分解性ゲルが分解する処理を施す分解処理部である よう構成されたセルソーター又はフローサイトメーター。 [請求項2] 前記流路が平面状であり、前記複数のマイクロウェルは、当該流路を構成する下壁に設けられている、請求項1記載のセルソーター又はフローサイトメーター。 [請求項3] 前記分解性ゲルが、光分解性ゲルであり、 前記分解処理部は、前記光分解性ゲルが分解する波長の光を照射可能な光照射部である、請求項1又は2記載のセルソーター又はフローサイトメーター。 [請求項4] 前記情報取得部は、 前記複数のマイクロウェルからの前記情報を、マイクロウェル毎に取得、複数のマイクロウェルのうちの2以上のものについて一度に取得、又は前記複数すべてのマイクロウェルについて一度に取得可能である、請求項1~3のいずれか一項記載のセルソーター又はフローサイトメーター。 [請求項5] 前記情報取得部は、 前記複数のマイクロウェルに対して、取得されるべき前記情報のソースとなる情報ソース波を照射可能な情報ソース波照射部と、 前記情報ソース波照射部が前記複数のマイクロウェルに対して前記情報ソース波を照射した際、前記複数のマイクロウェルから発生し得る前記情報を受信する情報受信部と を有する、請求項1~4のいずれか一項記載のセルソーター又はフローサイトメーター。 [請求項6] 前記情報ソース波照射部は、第一態様として、マイクロウェル毎に前記情報ソース波を照射可能であるか;第二態様として、複数のマイクロウェルのうちの2以上のものを一度に照射可能であるか;又は、第三態様として、前記複数すべてのマイクロウェルを一度に照射可能であり;前記第一態様及び前記第二態様の場合には、前記複数のマイクロウェルすべてを走査して照射し得る、請求項5記載のセルソーター又はフローサイトメーター。 [請求項7] 前記情報ソース波照射部は、解析項目の数に応じ、複数種の情報ソース波を出力可能である、請求項5又は6項記載のセルソーター又はフローサイトメーター。 [請求項8] 前記情報ソース波照射部から照射される前記情報ソース波が光であり、前記分解性ゲルが光分解性ゲルであり、且つ、前記分解処理部が、前記光分解性ゲルが分解する波長の光を照射可能な光照射部である場合、当該光の波長は、前記光分解性ゲルが分解する光の波長とは異なる、請求項5~7のいずれか一項記載のセルソーター又はフローサイトメーター。 [請求項9] 前記光照射部と前記情報ソース波照射部とが、同一光源であり、 前記同一光源は、前記光分解性ゲルが分解する波長の光と、取得されるべき前記情報のソースとなる、前記光分解ゲルが分解する前記波長とは異なる波長の光と、を切替照射可能に構成されている、請求項8記載のセルソーター又はフローサイトメーター。 [請求項10] 前記セルソーター又はフローサイトメーターは、 前記情報取得部で取得した前記情報を自動解析する自動解析手段を有していてもよく、 更に、ユーザーの指示又は前記自動解析手段による解析結果に基づき、取得が望まれる被検体が収納されたマイクロウェル内の分解性ゲルに当該ゲルが分解する処理を施すよう、前記選択取り出し手段を制御する選択取り出し制御手段 を更に有する、請求項1~9のいずれか一項記載のセルソーター又はフローサイトメーター。 [請求項11] 請求項1~10のいずれか一項記載のセルソーター又はフローサイトメーター用である、前記流路を備えたマイクロ流体デバイス。 [請求項12] 請求項1~10のいずれか一項記載のセルソーター又はフローサイトメーター用である、前記分解性ゲルを形成し得る材料を含有する液体。 [請求項13] 複数のマイクロウェルを有する流路に、被検体を含有する液を流し、前記マイクロウェル内に前記被検体を充填する充填工程と、 前記充填工程後、前記マイクロウェル内に充填された前記被検体を解析する解析工程と、 前記解析工程後、前記被検体を取り出す取得工程と を含む被検体回収方法であって、 前記液が、第一成分と、前記第一成分とは異なる第二成分と、を含有し、 前記第一成分が、基本骨格が生体適合性ポリマーであり且つ前記第二成分と結合し得る第一部を有し、 前記第二成分が、基本骨格が生体適合性ポリマーであり且つ前記第一成分と結合し得る第二部を有し、 前記解析工程の際には、前記第一部と前記第二部との結合形成により、前記第一成分と前記第二成分とが架橋したゲルが、前記マイクロウェル内に形成された状態にあり、 前記第一成分及び/又は前記第二成分は、分解性部分を更に有しており、 前記取得工程においては、分解処理を行うことで、前記分解性部分を分解させて前記ゲルを分解し、前記被検体を取り出す、被検体回収方法。 [請求項14] 前記第一部がアジドであり、前記第二部がアルキンである、請求項13記載の被検体回収方法。 |
明細書 |
明 細 書 発明の名称 : セルソーティング方法、並びにこれを利用したフローサイトメトリー及びセルソーター 技術分野 [0001] 本発明は、新規なセルソーティング方法、並びにこれを利用したフローサイトメトリー及びセルソーターに関する。 背景技術 [0002] フローサイトメトリーは、蛍光色素でラベルした抗体等をターゲット細胞に結合させ、その蛍光や散乱光によって粒子を分析・分離する手法をいう。この際、細胞等の微粒子集団から特定の細胞(微生物を含む)を分離する手法が、セルソーティング技術である(非特許文献1等)。セルソーティング技術は、細胞挙動や細胞機能を理解する上で、非常に重要な方法である。 [0003] 非特許文献1の技術(図18参照)では、蛍光色素等でラベルした抗体を結合させたターゲット細胞の懸濁液を液流とし、まず、その流路内で該細胞に、標識した蛍光色素に応じて励起光を照射し、各細胞から発する蛍光又は散乱光の波長や強度を解析して所望の細胞を識別する。次いで、上記光の波長や強度等の解析結果によって識別された特定の性質を有する細胞に電圧を印加して帯電させ、偏向電極を利用して上記で帯電された細胞の弁別、定量、統計解析等を行う。 先行文献 [0004] 非特許文献1 : 「細胞工学」別冊「フローサイトメトリー自由自在」、監修:中内啓光(筑波大学医学系 免疫学)、秀潤社、1999年7月1日発行、第3-23頁 発明の概要 発明が解決しようとする課題 [0005] このように、従来のセルソーティング技術は、流路に沿って流れてくる1個1個の細胞を順番に解析し、回収する技術である。より具体的には、検出部を通過する瞬間の細胞から発せられるシグナル(主に蛍光や散乱光)の絶対値で解析する技術である。したがって、多数の細胞について多数の項目について解析を行うことに対しては不向きである。しかも、当該技術は、偽陽性や偽陰性の発生も懸念される技術でもある。他方、偽陽性や偽陰性の頻度を少なくし且つ多数の細胞について多数の項目について解析を行う手法としては、マイクロアレイ技術がある。しかしながら、当該技術では、取得が望まれる細胞が見出された際、当該細胞が入っているマイクロウェルにマイクロマニピュレーターを挿入する手法にて当該細胞を取得するという点で、所望細胞取得の自動化には不向きである。したがって、本発明は、偽陽性や偽陰性の頻度を低減させつつ複数の被検体(例えば細胞)を同時に解析可能であり且つ自動化が可能な被検体(例えば細胞)取得技術を提供することを課題とする。 課題を解決するための手段 [0006] 本発明は下記の通りである: [1] 複数のマイクロウェルを有する流路と、 複数の被検体(例えば被検細胞)を含有する液を、前記流路に導入可能な導入路と、 前記複数のマイクロウェルに収納された複数の被検体(例えば被検細胞)から情報を取得する情報取得部と、 前記情報取得部が取得した情報に基づき、一のマイクロウェル内の被検体(例えば被検細胞)を当該マイクロウェル内から選択的に取り出し可能な選択取り出し手段と、 前記選択取り出し手段により選択的に取り出された被検体(例えば被検細胞)を回収可能な被検体(例えば被検細胞)回収部と を有するセルソーター又はフローサイトメーターであって、 前記複数のマイクロウェルが、被検体(例えば被検細胞)及び分解性ゲル(例えば光分解性ゲル)を収納可能であり、 前記選択取り出し手段が、取り出されるべき被検体(例えば被検細胞)が保持されたマイクロウェル内の分解性ゲル(例えば光分解性ゲル)に対し、当該分解性ゲル(例えば光分解性ゲル)が分解する処理を施す(例えば当該光分解性ゲルが分解する波長の光を照射可能な)分解処理部(例えば分解光照射部)である よう構成されたセルソーター又はフローサイトメーター。 [2] 前記流路が平面状であり、前記複数のマイクロウェルは、当該流路を構成する(上壁及び下壁の内の)下壁に設けられている、前記[1]のセルソーター又はフローサイトメーター。 [3] 前記分解性ゲルが、光分解性ゲルであり、 前記分解処理部は、前記光分解性ゲルが分解する波長の光を照射可能な光照射部である、前記[1]又は[2]のセルソーター又はフローサイトメーター。 [4] 前記情報取得部は、 前記複数のマイクロウェルからの前記情報を、マイクロウェル毎に取得、複数のマイクロウェルのうちの2以上のものについて一度に取得、又は前記複数すべてのマイクロウェルについて一度に取得可能である、前記[1]~[3]のセルソーター又はフローサイトメーター。 [5] 前記情報取得部は、 前記複数のマイクロウェルに対して、取得されるべき前記情報のソースとなる情報ソース波を照射可能な情報ソース波照射部と、 前記情報ソース波照射部が前記複数のマイクロウェルに対して前記情報ソース波を照射した際、前記複数のマイクロウェルから発生し得る前記情報を受信する情報受信部と を有する、前記[1]~[4]のセルソーター又はフローサイトメーター。 [6] 前記情報ソース波照射部は、第一態様として、マイクロウェル毎に前記情報ソース波を照射可能であるか;第二態様として、複数のマイクロウェルのうちの2以上のものを一度に照射可能であるか;又は、第三態様として、前記複数すべてのマイクロウェルを一度に照射可能であり;前記第一態様及び前記第二態様の場合には、前記複数のマイクロウェルすべてを走査して照射し得る、前記[5]のセルソーター又はフローサイトメーター。 [7] 前記情報ソース波照射部は、解析項目の数に応じ、複数種の情報ソース波を出力可能である、前記[5]又は[6]のセルソーター又はフローサイトメーター。 [8] 前記情報ソース波照射部から照射される前記情報ソース波が光であり、前記分解性ゲルが光分解性ゲルであり、且つ、前記分解処理部が、前記光分解性ゲルが分解する波長の光を照射可能な光照射部である場合、当該光の波長は、前記光分解性ゲルが分解する光の波長とは異なる、前記[5]~[7]のセルソーター又はフローサイトメーター。 [9] 前記光照射部と前記情報ソース波照射部とが、同一光源であり、 前記同一光源は、前記光分解性ゲルが分解する波長の光と、取得されるべき前記情報のソースとなる、前記光分解ゲルが分解する前記波長とは異なる波長の光と、を切替照射可能に構成されている、前記[8]のセルソーター又はフローサイトメーター。 [10] 前記セルソーター又はフローサイトメーターは、 前記情報取得部で取得した前記情報を自動解析する自動解析手段を有していてもよく、 更に、ユーザーの指示又は前記自動解析手段による解析結果に基づき、取得が望まれる被検体(例えば被検細胞)が収納されたマイクロウェル内の分解性ゲル(例えば光分解性ゲル)に当該ゲルが分解する処理を施す(例えば光分解性ゲルが分解する波長の光を照射する)よう、前記選択取り出し手段を制御する選択取り出し制御手段 を更に有する、前記[1]~[9]のセルソーター又はフローサイトメーター。 [11] 前記[1]~[10]のセルソーター又はフローサイトメーター用である、前記流路を備えたマイクロ流体デバイス。 [12] 前記[1]~[10]のセルソーター又はフローサイトメーター用である、前記分解性ゲルを形成し得る材料を含有する液体(例えば、下記第一成分を含有する液と、下記第二成分を含有する液と、を少なくとも含むキット)。 [13] 複数のマイクロウェルを有する流路に、被検体(例えば被検細胞)を含有する液を流し、前記マイクロウェル内に前記被検体(例えば被検細胞)を充填する充填工程と、 前記充填工程後、前記マイクロウェル内に充填された前記被検体(例えば被検細胞)を解析する解析工程と、 前記解析工程後、前記被検体(例えば被検細胞)を取り出す取得工程と を含む被検体(例えば細胞)回収方法であって、 前記液が、第一成分と、前記第一成分とは異なる第二成分と、を含有し、 前記第一成分が、基本骨格が生体適合性ポリマーであり且つ前記第二成分と結合し得る第一部を有し、 前記第二成分が、基本骨格が生体適合性ポリマーであり且つ前記第一成分と結合し得る第二部を有し、 前記解析工程の際には、前記第一部と前記第二部との結合形成により、前記第一成分と前記第二成分とが架橋したゲルが、前記マイクロウェル内に形成された状態にあり、 前記第一成分及び/又は前記第二成分は、分解性部分(例えば光分解性部分)を更に有しており、 前記取得工程においては、分解処理(例えば光照射)を行うことで、前記分解性部分(例えば光分解性部分)を分解させて前記ゲルを分解し、前記被検体(例えば被検細胞)を取り出す、被検体(例えば細胞)回収方法。 [14] 前記第一部がアジドであり、前記第二部がアルキンである、前記[13]の被検体(例えば細胞)回収方法。 発明の効果 [0007] 本発明によれば、偽陽性や偽陰性の頻度を低減させつつ複数の被検体(例えば細胞)を同時に解析可能であり且つ自動化が可能な被検体(例えば細胞)取得技術を提供することができる。 図面の簡単な説明 [0008] [図1] 図1は、マイクロ流体デバイスAの断面図である。 [図2] 図2は、マイクロ流体デバイスAの上面図である。 [図3] 図3は、マイクロ流体デバイスAの分解図である。 [図4] 図4は、ゲル化成分である第一成分と第二成分との間でのゲル化の際の結合部の化学構造式の例と、ゲルが分解する波長の光を照射した際の分解部の化学構造式の例である。 [図5] 図5は、マイクロ流体デバイス及び第一液及び第二液を使用することで、被検細胞がマイクロウェル内に固定される様子を示した図である。 [図6] 図6は、本発明の一例であるセルソーター又はフローサイトメーターの解析工程における概念斜視図である。 [図7] 図7は、本発明の一例であるセルソーター又はフローサイトメーターの細胞取得工程における、(a)概念斜視図及び(b)作用図である。 [図8] 図8は、本発明の一例であるセルソーター1における、セルソーター1の全体構成を示す概略図である。 [図9] 図9は、本発明の一例であるセルソーター1の、機能ブロック図である。 [図10] 図9は、本発明の一例であるセルソーター1における、細胞解析制御処理のフローチャートである。 [図11] 図11は、本発明の一例であるセルソーター1における、細胞取得制御処理のフローチャートである。 [図12] 図12は、本発明の一例であるセルソーター1における、細胞解析制御処理の変更例に係るフローチャートである。 [図13] 図13は、実施例で使用した光分解性ハイドロゲル材料の合成スキームを示した図である。 [図14] 図14は、実施例1における、マイクロウェルに細胞が収納・固定されていることを示した写真である。 [図15] 図15は、実施例2における、マイクロウェルに固定化された蛍光染色を施したHL60細胞の蛍光顕微鏡像である。 [図16] 図16は、実施例3における、マイクロウェルに固定化された蛍光タンパク質発現Ba/F3細胞の蛍光顕微鏡像である。 [図17] 図17は、実施例4における、マイクロウェルに固定化された蛍光タンパク質発現Ba/F3細胞の蛍光顕微鏡像である。 [図18] 図18は、従来のセルソーティング技術である。 発明を実施するための形態 [0009] 以下、本発明をより具体的に説明する。ここで、本発明における「被検体」は、特に限定されず、例えば、細胞やビーズ(例えば、ウィルス等のターゲット成分を担持したビーズ)を挙げることができる。但し、以下では、「被検体」として本発明の好適態様である「細胞」を例に採り説明する。更に、本発明における「分解性ゲル」は、所定の処理を施すことにより分解し得るゲルであれば特に限定されず、エネルギー(例えば、光、音や熱)で分解し得るゲル、分解剤の添加により分解し得るゲルを挙げることができる。但し、以下では、「分解性ゲル」として本発明の好適態様である「光分解性ゲル」を例に採り説明する。尚、以下の項目に従い説明する。また、以下の説明にて、「セルソーター」又は「フローサイトメーター」として記載している場合であっても、「フローサイトメーター」又は「セルソーター」と読み替えたものも含むものとする。 (1.セルソーティング方法) 1-1.充填工程 1-1-1.マイクロ流体デバイスの構造 1-1-2.マイクロ流体デバイス内に流す第一液 1-1-2-1.第一成分及び第二成分 ・基本骨格 ・第一部/第二部 ・光分解性部分 1-1-3.マイクロ流体デバイス内に流す第二液 1-1-4.プロセス 1-2.検出工程 1-3.解析工程 1-4.取得工程 (2.セルソーター) 2-1.マイクロ流体デバイス 2-2.レーザービーム照射部 2-3.シグナル検知部 2-4.ゲル分解用光照射部 [0010] ≪1.セルソーティング方法≫ 本発明に係るセルソーティング方法は、 複数のマイクロウェルを有する流路に、被検細胞を含有する液を流し、前記マイクロウェル内に前記被検細胞を充填する充填工程と、 前記充填工程後、前記マイクロウェルに情報ソース波(例えば、レーザー光)を照射し、当該照射に起因したシグナルを検出するシグナル検出工程と、 前記シグナル検出工程での前記シグナルに基づき、前記マイクロウェル内に充填された前記被検細胞を解析する解析工程と、 前記解析工程後、前記被検細胞を取り出す取得工程と を含む。以下、各工程について詳述する。 [0011] <1-1.充填工程> 充填工程は、前記のように、マイクロウェルを有する流路(マイクロ流体デバイス)に、被検細胞を含有する第一液を流し、前記マイクロウェル内に前記被検細胞を充填し、その後に第二液を流してマイクロウェル外の第一液(マイクロウェルに入らなかった細胞を含有する第一液又は一部ゲル化されたものを含む液)を除去する工程である。図1~図5を参照しながら、当該充填工程を詳述する。 [0012] {1-1-1.マイクロ流体デバイスの構造} 図1~図3に、マイクロ流体デバイスAの一例を示す。ここで、図1は、マイクロ流体デバイスAの断面図であり、図2は、マイクロ流体デバイスAの上面図であり、図3は、マイクロ流体デバイスの分解図である。まず、図1から理解できるように、当該マイクロ流体デバイスAは、上面A-1と下面A-2との間にギャップを設けた平面構造を採っている。そして、図1及び図3に示すように、当該マイクロ流体デバイスAは、当該ギャップ内に液体を導入するための挿入口A-a(挿入口A-aに挿入された、液挿入用の導入口A1)と、当該ギャップ内の流体を排出するための開口部A-b(開口部A-bから排出される液を吸入し外部に排出可能な排出口A2)と、を有している。そして、図1~図3に示すように、当該マイクロ流体デバイスAの下面には、多数のマイクロウェルA-3が設けられている。ここで、図3では、マイクロウェルの径として、20μm、30μm及び40μmのものを図示したが、これには限定されない。マイクロウェルの径は、対象とする細胞の大きさにより適宜選択され、好適には10~50μmである。一般的な哺乳類細胞の場合、より好ましくは、15~30μmである。好適な径よりも小さい場合は、細胞充填率が低下し、大きい場合は複数個の細胞が単一のウェルに充填されてしまい、単一細胞充填率が低下してしまう。また、マイクロ流体デバイスA内のウェル密度は、特に限定されないが、単一細胞のキャプチャーを高効率で行う観点からは、100~10,000個/mm2である。一般的な哺乳類細胞の場合、より好ましくは、500~2,000個/mm2である。好適なウェル密度よりも小さい場合は、一度の解析で処理できる細胞の数が減少してしまう。またウェル密度の上限は、前記好適な径を最密で並べた際の密度によって決まる。更に、ウェル間隔も、特に限定されないが、好適には2μm以上である。尚、マイクロ流体デバイスは、少なくとも、液体が通過可能な流路と、当該流路の壁面に設けられた複数のマイクロウェルと、前記流路に流体を注入するための注入口と、前記流路から流体を排出するための排出口と、を有する。また、マイクロウェルには、マイクロウェル内に収納された細胞の接着を防止するため、細胞接着抑制成分{例えば、BSA、PEG、MPC(2‐メタクリロイルオキシエチルホスホリルコリン)、アガロース等}にて表面処理することが好適である。 [0013] なお、側壁の高さ(上面A-1と下面A-2との間隔)は、用いるウェルのサイズや、マイクロ流体デバイスに注入する各液の性状や注入条件等に合わせて適宜設計可能である。 [0014] また、図1及び図3に示されるように、マイクロ流体デバイスAは、上面A-1及び下面A-2がそれぞれ別の部材により構成され、また、上面A-1及び下面A-2に介在することで流路を形成する側壁A-4が設けられているが、これはあくまで一例であり、上面A-1、下面A-2及び側壁A-4が一体に形成される等、本発明の用途に利用可能な限り、何ら限定されない。また、本例では、マイクロ流体デバイスAの上面A-1及び下面A-2を平面構造としているが、これには限定されず、微細な凹凸が設けられていてもよい。なお、上述のように、当該マイクロ流体デバイスAの下面A-2は、平面構造を採っているため、被検細胞を含有する第一液の流路が平面状となる。その結果、第一液の流れが円滑となり、より効率よくマイクロウェルへの第一液及び被検細胞の充填を行うことが可能となる。またこの場合、マイクロウェルは、本例のように、流路を構成する上下壁の下壁(即ち、本例では下面A-2)に設けられていることが好ましい。流路の下壁にマイクロウェルを設けることで、マイクロウェル内への被検細胞の充填を確実なものとすることが出来る。なお、マイクロウェルは、用途に応じて、流路を構成する上壁(上面A-1)や側壁A-4等に設けられていてもよい。 [0015] {1-1-2.マイクロ流体デバイス内に流す第一液} マイクロ流体デバイス内に流す第一液は、複数の被検細胞を含有する液であって、第一成分と、前記第一成分とは異なる第二成分と、を含有する。ここで、第一成分と第二成分は、時間経過に伴い反応し、ゲル化する。尚、第一成分及び第二成分は、液(例えば、細胞が生存可能な液体、例えば、生理食塩水や液体培地)に溶解した状態にて存在する。以下、第一液に含まれる各成分を詳述する。 [0016] (1-1-2-1.第一成分及び第二成分) 第一成分及び第二成分は、前述のように、ゲル化材料である。ここで、第一成分は、基本骨格が生体適合性ポリマーであり且つ前記第二成分と結合し得る第一部を有する。また、第二成分は、基本骨格が生体適合性ポリマーであり且つ前記第一成分と結合し得る第二部を有する。更に、第一成分及び/又は第二成分は、光分解性部分を更に有している。以下、これら第一成分及び第二成分の「基本骨格」と「第一部・第二部」と「光分解性部分」についてそれぞれ詳述する。 [0017] ・基本骨格 基本骨格を構成する生体適合性ポリマーは、特に限定されず、炭水化物ベースポリマー(メチルセルロース、カルボキシメチルセルロース、ヒドロキシメチルセルロース ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、エチルセルロース、デキストリン、シクロデキストリン、アルギン酸塩、ヒアルロン酸及びキトサン等);タンパク質ベースポリマー(ゼラチン、コラーゲン及びグリコールタンパク質等);ヒドロキシ酸ポリエステル(生体内分解性ポリラクチド-coグリコリド(PLGA)、ポリ乳酸(PLA)、ポリグリコリド、ポリヒドロキシ酪酸、ポリカプロラクトン、ポリバレロラクトン、ポリホスファゼン及びポリオルトエステル等);アルブミン;ポリアンヒドリド;ポリエチレングリコール;ポリビニルポリヒドロキシアルキルメタクリレート;ピロリドン;ポリビニルアルコールが挙げられる。これらの内、ポリエチレングリコールが好適である。特に、マルチアームPEG(例えば、2-アーム、4-アーム、8-アーム)が好適である。また、PEGの重量平均分子量は、好適には500~100,000であり、より好適には2,000~40,000である。このようなPEGは、細胞に対する影響が少ないため、細胞が本来有する機能を損なわない形にて細胞を回収できる(換言すれば、生存したまま細胞を回収できる)点で優れている。ここで、重量平均分子量は、MALDI-TOF-MSで測定した値である。 [0018] ・第一部/第二部 第一成分の基本骨格に結合した第一部(又は第二成分の基本骨格に結合した第二部)は、ゲルを構成する相手側である第二成分の基本骨格に結合した第二部(又は第一成分の基本骨格に結合した第一部)と結合し得るものである。このような第一部と第二部との組み合わせとしては、例えば、液中で化学的に結合を形成する反応基の組み合わせである、アジド基とアルキン基(環化付加反応)、アジド基とジベンゾシクロオクチン基(環化付加反応)、チオール基とマレイミド基(マイケル付加反応)、チオール基とヨードアセトアミド基、チオール基とビニルスルホン基、アルデヒド基とヒドラジン基、ケトン基とヒドラジン基、アルデヒド基とアミノオキシ基、ケトン基とアミノオキシ基、化学的な結合または強固な相互作用を形成するタンパク質とリガンドの組み合わせである、ビオチン基とストレプトアビジン、マルトシル基とマルトース結合タンパク質、グルタチオニル基とグルタチオン-S-トランスフェラーゼ、HaloTag(登録商標)リガンドとHaloTag(登録商標)タンパク質、グアニリルメチルフェニル基とSNAP-tag(登録商標)、シトシニルメチルフェニル基とCLIP-tag、Strep-tag(登録商標)とStrep-tactin(登録商標)、抗原と抗体、を挙げることができる。また、第一部と第二部として重合性のモノマーであるアクリル基、メタクリル基、ビニル基、エポキシ基のうちのどれかを用い、光分解性基とは波長が異なる可視光活性化型重合開始剤であるエオシンY、ローズベンガル、カンファ-キノン、エリトロシンのうちどれかを用いた重合によって結合し得るものであってもよい。尚、上述した組み合わせの内、アジド基とアルキン基との組み合わせが、細胞表面の官能基とは殆ど反応しないために好適である。尚、生体適合性ポリマーへの第一部及び第二部の修飾は、周知の手法で行うことができる。 [0019] ・光分解性部分 光分解性部分は、第一成分及び第二成分の一方に存在していても、両方に存在していてもよい。ここで、光分解性部分は、光照射により脱離する任意の基をいい、例えば、ニトロベンジル基、ニトロフェニルエチルエステル基(NPE)、ジメトキシニトロベンジルエステル基(DMNB)、ブロモヒドロキシクマリン(Bhc)基、ジメトキシベンゾイン基、2-ニトロピペロニルオキシカルボニル(NPOC)基、2-ニトロベラトリルオキシカルボニル(NVOC)基、α-メチル-2-ニトロピペロニルオキシカルボニル(MeNPOC)基、α-メチル-2-ニトロベラトリルオキシカルボニル(MeNVOC)基、2,6-ジニトロベンジルオキシカルボニル(DNBOC)基、α-メチル-2,6-ジニトロベンジルオキシカルボニル(MeDNBOC)基、1-(2-ニトロフェニル)エチルオキシカルボニル(NPEOC)基、1-メチル-1-(2-ニトロフェニル)エチルオキシカルボニル(MeNPEOC)基、9-アントラセニルメチルオキシカルボニル(ANMOC)基、1-ピレニルメチルオキシカルボニル(PYMOC)基、3′-メトキシベンゾイニルオキシカルボニル(MBOC)基、3′,5′-ジメトキシベンゾイルオキシカルボニル(DMBOC)基、7-ニトロインドリニルオキシカルボニル(NIOC)基、5,7-ジニトロインドリニルオキシカルボニル(DNIOC)基、2-アントラキノニルメチルオキシカルボニル(AQMOC)基、α,α-ジメチル-3,5-ジメトキシベンジルオキシカルボニル基、5-ブロモ-7-ニトロインドリニルオシキカルボニル(BNIOC)基等を挙げることができる。これらの内、2-ニトロベンジル誘導体骨格を有する基は、通常の蛍光灯や白熱灯等の室内照明程度では光分解しないために好適である。 [0020] ここで、図4は、ゲル化成分である第一成分と第二成分との間でのゲル化の際の結合部の化学構造式の例と、光照射(当該ゲルが分解する波長の光)した際の分解部の化学構造式の例である。ここで、第一成分は、4-アームPEG-PL-アジド(4-アームのPEGに光分解性の2-ニトロベンジル誘導体骨格が結合しており、2-ニトロベンジル誘導体骨格にアジドが更に結合)であり、第二成分は、4-アームPEG-DBCO(4-アームのPEGにジベンジルシクロオクチンが結合)である。これらを液に添加・混入した後、アジドとDBCOとの間で架橋が形成される。 [0021] 尚、第一液は、前記のように、使用時においては、第一成分及び第二成分を含有する。但し、使用前、即ち、第一液の輸送時や保存時等においては、使用前における第一成分と第二成分とのゲル化反応を防止すべく、好適には、第一成分を含有する液と、第二成分を含有する液と、の少なくとも二液からなるキットの態様である。 [0022] {1-1-3.マイクロ流体デバイス内に流す第二液} 被検細胞及びゲル化材料を含有する第一液をマイクロ流体デバイスAのギャップに流した後、第二液を流すことにより、マイクロウェル外に第一液を除去する。この際に使用する第二液は、特に限定されないが、第一液と相溶しない成分、例えば油が好適である。 [0023] {1-1-4.プロセス} 図5は、以上のデバイス及び液を使用することで、被検細胞がマイクロウェル内に固定される様子を示した図である。図5を参照しながら説明すると、第一液(ゲル溶液)をマイクロ流体デバイスの導入口から内部に注入する(図中(a))。当該操作を複数回(図の例では5~10回)繰り返す(図中(b))。当該操作により、マイクロウェル内に高効率にて細胞を充填することが可能となる。但し、注入操作は一回でもよい。この後、第二液(油)をマイクロ流体デバイスの導入口から内部に注入し、内部に存在する余剰の第一液をマイクロ流体デバイス外に排出する(図中(c))。その後、所定条件でインキュベートし、マイクロウェル内のゲル材料(第一成分及び第二成分)をゲル化させ、マイクロウェル内に収納された細胞を固定化する。 [0024] なお、本態様においては、第一液(ゲル溶液)をゲル化前にマイクロウェル内に充填させるプロセスとしたが、これには限定されない。より具体的には、被検細胞の周囲の第一液(ゲル溶液)をゲル化させた状態であり、第一液全体はゲル化されていない状態にて、第一液(ゲル溶液)をマイクロ流体デバイスの導入口から内部に注入することが好適である。このようなプロセスとすることにより、被検細胞の周囲のゲルが保護材として機能し、細胞が本来有する機能を損なわない形にて、マイクロウェル内に被検細胞を充填可能である。 [0025] <1-2.検出工程> マイクロウェル内でゲルにより固定された被検細胞からのシグナル検出は、従来公知のフローサイトメトリーやセルソーターで用いられる検出手法と同様のものとすることができる。例えば、情報ソースとなる波を対象へ照射し、その応答を観測することで、検出対象の情報を取得可能である。より具体的な例としては、検出は、検出対象のマイクロウェルにレーザー光(例えば、アルゴン、ダイオード、ダイ、ヘリウムネオンなどのsingle laserまたはDual laser)を照射し、当該照射に起因して得られるシグナル{前方散乱光(FSC)や側方散乱光(SSC)、標的細胞を予め蛍光物質で標識した場合には当該蛍光標識した細胞の各種蛍光}を測定することにより実行し得る。なお、このような情報ソースとなる波としては特に限定されず、ガンマ線~マイクロ波等の適宜の波長を有する電磁波や、音波等が例示可能である。 [0026] <1-3.解析工程> 解析は、従来公知のフローサイトメトリーやセルソーターで用いられる検出手法と同様のものとすることができる。例えば、上記検出工程にて得られたシグナル(データ)に基づく解析を通じ、細胞の大きさ、細胞の内部構造の複雑さ等が解析可能となる。特に、本発明によれば、細胞のイメージング(例えば、細胞膜分子の動態解析、細胞染色体の解析)等の、より詳細な解析を行うことも可能となる。本発明の一特徴は、マイクロウェル内に被検細胞が固定されているため、同時に複数の項目について解析が可能な点である。 [0027] <1-4.取得工程> 取得は、取得対象の被検細胞が収容されたマイクロウェルに光(マイクロウェル内にて被検細胞を包埋している光分解性ゲルを分解させる波長の光)を照射することで実施する。当該光が照射されたマイクロウェル内の光分解性ゲルは分解し、当該マイクロウェル内の被検細胞の固定が解除される(マイクロウェルの下方に落下)。その後、流路に液(例えば生理食塩水)を流すことで、当該液と共に前記被検細胞が排出される(なお、このような取得工程にて流路に放出される液体としては、細胞へのダメージ等が少ない液体、例えば生理食塩水、液体培地等が好適に使用可能である)。そして、液と共に排出された前記被検出細胞を取得する。このように、本発明の一特徴は、同一のアレイから、様々な種類の所望細胞を選択的に取得可能である点である。 [0028] 尚、上記では、マイクロウェル内に細胞をゲルで包埋した後ただちに解析を実施し、所望の細胞を取得する態様を例示したが、これには限定されない。例えば、マイクロウェル内に細胞をゲルで包埋した後、培養液を流す等して、当該細胞をウェル内で培養し(例えば長時間培養し)、当該培養後の細胞について解析してもよい。 [0029] ≪2.セルソーター≫ 次に、図6及び図7を参照しながら、本発明の一例であるセルソーター又はフローサイトメーターを詳述する。尚、当該セルソーター又は当該フローサイトメーターの基本構成は、従来公知のものと同一である。したがって、従来のものと相違する点を中心に説明する。 [0030] 本発明の一例であるセルソーター又はフローサイトメーター1は、 複数のマイクロウェル1-1-aを有する流路(マイクロ流体デバイス)1-1と、 前記複数のマイクロウェル1-1-aの一マイクロウェルに対してレーザービームを照射可能であるレーザービーム照射部1-2と、 前記レーザービーム照射部1-2が前記一マイクロウェルにレーザービームを照射した際、当該照射に起因して発せられたシグナルを検知するシグナル検知部1-3と、 前記シグナル検知部1-3からの前記シグナルに基づき、前記一マイクロウェル内の被検細胞を解析する解析部(図示せず)と、 を有しており、前記レーザービーム照射部1-2、前記シグナル検知部1-3及び前記解析部(図示せず)は、前記複数のマイクロウェル1-1-aすべてについて、前記照射、前記検知及び前記解析を実施可能に構成されたセルソーター1であって、 前記マイクロウェル1-1-aが、被検細胞及び光分解性ゲルを収納可能であり、 前記セルソーター1は、 前記解析部(図示せず)による前記解析後、前記光分解性ゲルを分解させるための光であって、前記レーザービームとは異なる波長の光を照射するゲル分解用光照射部1-4 を更に有する。以下、各部を詳述する。 [0031] <2-1.マイクロ流体デバイス> マイクロ流体デバイスは上述したので、説明を省略する(図1~3に示されたマイクロ流体デバイスAと、図6及び図7に示されたにマイクロ流体デバイス1-1とは、形状は異なるが、有する機能は同様である)。尚、マイクロ流体デバイス1-1内のマイクロウェル1-1-aへの光照射(レーザービーム照射部1-2及び/又はゲル分解用光照射部1-4からの光照射)やシグナル検知(シグナル検知部1-3)を行うため、マイクロ流体デバイス1-1の、少なくともマイクロウェル1-1-aが存在する箇所は、光透過性であることが望ましい。 [0032] <2-2.レーザービーム照射部> レーザービーム照射部1-2は、複数のマイクロウェル1-1-aのそれぞれを独立して照射可能に構成されている。例えば、図6の例では、複数のマイクロウェル1-1-aそれぞれの直下(又は直上)に移動可能(前後左右)に構成されている(所謂、走査型である)。尚、この場合、後述するシグナル検知部1-3も、レーザービーム照射部1-2の移動に追従して移動可能(前後左右)に構成されている(図6(a)及び(b)参照)。尚、複数のマイクロウェル1-1-aそれぞれに独立して光照射する手法はこれに限られず、例えば、レーザービーム照射部1-2の根元は固定されている状況下で首振りにて照射するマイクロウェル1-1-aの位置を変える手法や、レーザービーム照射部1-2を複数のマイクロウェル1-1-aの数だけ設ける手法、一度に複数のマイクロウェル1-1-aを照射する手法(例えば、レーザービーム照射部をライン状に配置することで線状の光源とする手法や、ある一定範囲を一区画とし、当該一区画内の複数のマイクロウェルに光照射可能な面状の光源とする手法等)、一度に複数すべてのマイクロウェルを照射する手法等(すべてのマイクロウェルに光を照射可能な光源を用いる等)、であってもよい。また、複数の解析を同時に行う場合、解析の種類と対応して複数のレーザービーム照射部を設けてもよい。また、レーザービーム照射部が検知波の種類を変更可能とし、複数の解析を同時に行う構成としてもよい。なお、本例では、マイクロウェル1-1-aの直下(又は直上)から光照射される形態を示しているが、マイクロウェル1-1-aに対して斜め下方(又は斜め上方)から光照射を行う形態であってもよい。 [0033] <2-3.シグナル検知部> シグナル検知部1-3は、レーザービーム照射部1-2によりレーザーが被検細胞に照射された際に発せられたシグナルを検知するものである。前記レーザービーム照射部1-2同様、複数のマイクロウェル1-1-aそれぞれのシグナルを検知する必要があるため、図6の例では、前記のように、レーザービーム照射部1-2の移動に追従して移動可能(前後左右)に構成されている(図6(a)及び(b)参照)。尚、複数のマイクロウェル1-1-aそれぞれのシグナルを検知する手法はこれに限られず、例えば、シグナル検知部1-3を複数のマイクロウェル1-1-aの数だけ設ける手法、複数のマイクロウェルからのシグナルを検知する手法(例えば、複数のシグナル検知部1-3をライン状に配置する手法や、ある一定範囲を一区画とし、当該一区画内の複数のマイクロウェルからのシグナルを検知可能とする手法)や一度に複数すべてのマイクロウェルからのシグナルを検知する手法等、であってもよい。例えば、シグナル検知部が顕微鏡である場合、一つ一つのマイクロウェルを撮像する、又は、複数のマイクロウェルを同時に撮像する等、適宜構成を変更可能である。また、複数の解析を同時に行う場合、解析の種類と対応して複数のシグナル検知部1-3を設けてもよい(例えば、一のマイクロウェルと対応した形にて複数のシグナル検知部をユニット化して設置)。なお、本例では、シグナル検知部1-3が、マイクロウェル1-1-aの存在する面(流路)を介して、レーザービーム照射部1-2の反対側に存在する形態を示したが、これには限定されず、レーザービーム照射部1-2と同じ側に存在させる等、検知するシグナルの種類に応じて適宜変更可能である。 [0034] <2-4.ゲル分解用光照射部> ゲル分解用光照射部1-4は、複数のマイクロウェル1-1-aのそれぞれを独立して照射可能に構成されている。尚、図7では、図面の簡略化の観点から、レーザービーム照射部1-2と同じものとして記載しているが、レーザービーム照射部1-2の光とゲル分解用光照射部1-4の光とは波長が異なるため、通常は異なる光源である。但し、照射する光の波長を変更できる光源である場合にはレーザービーム照射部1-2とゲル分解用光照射部1-4とを分ける必要がない。即ち、この場合、ゲル分解用光照射部とレーザービーム照射部とは、同一光源であってもよい。更には、複数の光源(レーザービーム照射部1-2とゲル分解用光照射部1-4)をユニット化した光源であってもよい。ここで、ゲル分解用光照射部1-4も、レーザービーム照射部1-2と同様、図7の例では、複数のマイクロウェル1-1-aそれぞれの直下(又は直上)に移動可能(前後左右)に構成されている。尚、これも前述したレーザービーム照射部1-2同様、複数のマイクロウェル1-1-aそれぞれに独立して光照射する手法はこれに限られず、例えば、ゲル分解用光照射部1-4の根元は固定されている状況下で首振りにて照射するマイクロウェル1-1-aの位置を変える手法や、ゲル分解用光照射部1-4を複数のマイクロウェル1-1-aの数だけ設ける手法等、であってもよい。 [0035] なお、レーザービーム照射部及びシグナル検知部を有する装置の具体例としては、共焦点レーザー顕微鏡等(CLSM)が例示可能である。より具体的には、共焦点レーザー顕微鏡で複数の細胞を同時にイメージング(顕微鏡解析)し、細胞を選別する。その後、目的の細胞が含まれるウェルに、CLSMのROI(Region of Interest)モードを使い、その部分にだけ光分解波長の光(例えば、405nmの光)を照射してゲルを分解する、等とすればよい。 [0036] なお、本例のセルソーター又はフローサイトメーターでは、マイクロ流体デバイス1の導入口1-1-bから各種液を送液可能であり、分解したゲル等は、マイクロ流体デバイス1の排出口1-1-cから排出される構成としており、排出口1-1-cでは、排出された液及びゲルに含まれる細胞を回収するための箱1-6が設けられている(このような送液、排出、及び細胞回収等は、必要に応じて適宜の手段で行われればよい)。 [0037] <2-6.解析のフロー> 次に、本発明のセルソーター又はフローサイトメーター(以下、単にセルソーター1等とする)による解析の流れについて説明する。ここでは、被検細胞を含むゲルが充填されたマイクロウェルを有するマイクロ流体デバイス1-1が、セルソーター1の所定の位置に設置されている状態にて、検出工程及び解析工程を行う場合の解析のフローを一例として説明する。 [0038] なお、本例のセルソーター1は、図6及び図7に示した、一つのマイクウェルに対応したレーザー光照射が可能なレーザービーム照射部1-2(レーザー照射部1-2)、レーザー照射部1-2の光照射に由来するシグナルを検知可能なシグナル検知部1-3、及び、一つのマイクウェルに対応した光照射が可能なゲル分解用光照射部1-4を有し、各々が移動可能(前後左右)に構成されている。 [0039] まず、図8は、本発明のセルソーター1の全体構成を示す概略図である。本図に示されるように、セルソーター1は、CPUとROM領域とRAM領域とを有する処理部100と、シグナル検知部1-3と、レーザー照射部1-2と、ゲル分解用光照射部1-4と、相液部2と、細胞回収部3と、表示部4とを有する。 [0040] ここで、送液部2は、マイクロ流体デバイス1-1内に、各種液(前述の第一液、第二液及び生理食塩水等の液)を充填可能な装置であり、且つ、装置内の流路を変更することで、送液する液体を適宜選択及び切換え可能な装置である。細胞回収部3は、マイクロウェル1-1-aから排出される細胞を回収可能な装置(例えば、先述した箱1-6)である。表示部4は、処理部100の有する各種データ(例えば、後述する細胞情報等)を画像として表示可能な装置である。なお、その他の構成に関しては、上述の通りであるので省略する。 [0041] 次に、図9は、本例のセルソーター1の、機能ブロック図である。本図に示されるように、処理部100は、解析工程/検出工程に係る装置を制御可能な検出装置制御部110と、取得工程に係る装置を制御可能なゲル分解装置制御部120と、送液部2を制御可能な送液制御部130と、細胞回収部3の細胞取得挙動(例えば、細胞を導入する開口部の開閉や、開口部の位置等)を制御可能な細胞回収制御部140と、情報記憶部150と、情報記憶部150に記憶された細胞情報に基づいた様々な判定を行うことが可能な細胞情報判定部160と、表示部4の映像出力等を制御可能な表示制御部170と、を有する。なお、本図に示されるように、本例では、レーザー照射部1-2及びシグナル検知部1-3を有する検出装置と、ゲル分解用光照射部1-4を有するゲル分解装置と、送液部2と、細胞回収部3と、表示装置4とが、処理部100に電気的に接続されている。 [0042] また、検出装置制御部110は、レーザー照射部1-2におけるレーザー照射態様(照射時間や照射強度等)を制御可能なレーザー照射制御部111-1と、レーザー照射部1-2のマイクロウェルに対する照射位置を制御可能なレーザー照射位置制御部111-2と、シグナル検知部1-3の検知態様(検知時間等)を制御可能なシグナル検知制御部121-1と、シグナル検知部1-3のマイクロウェルに対する検知位置を制御可能なシグナル検知位置制御部112-2とを有する。 [0043] また、ゲル分解装置制御部120は、ゲル分解用光照射部1-4における光照射態様(照射時間や照射強度等)を制御可能なゲル分解用光照射制御部121-1と、ゲル分解用光照射部1-4の照射位置を制御可能なゲル分解用光照一射制御部121-2とを有する。 [0044] 次に、図10は、セルソーター1における、細胞解析制御処理(ステップ1000)に係るフローチャートである。 [0045] 先ず、マイクロ流体デバイス1-1がセルソーター1の所定の位置に設置された状況下、ステップ1001で、処理部100は、細胞解析制御が開始された否かを判断する。ステップ1001でYesの場合、ステップ1002で、送液制御部130は、マイクロ流体デバイス1-1内に、送液部2から細胞含有液(第一液)を送液し、マイクロ流体デバイス1-1内のマイクロウェルに細胞含有液を充填する。次に、ステップ1004で、送液制御部130は、マイクロ流体デバイス1-1内に、送液部2から油を送液し、マイクロ流体デバイス1-1内の余剰の細胞含有液を排除する(なお、ステップ1004で送液される液体は油に限定されず、前述の第二液であればよい)。次に、ステップ1006で、処理部100は、レーザー照射部1-2及びシグナル検知部1-3の初期設定処理を行う(本例では、変数nとマイクロ流体デバイス1-1内の各マイクロウェルの位置情報とが結び付けられた状況下、nに1を代入する)。次に、ステップ1008で、レーザー照射位置制御部111-2及びシグナル検知位置制御部112-2は、レーザー照射部1-2及びシグナル検知部1-3をnの位置に移動させる。次に、ステップ1010で、レーザー照射制御部111-1は、レーザー照射部1-2から、nの位置に存在するマイクロウェルに対して検知用レーザーを照射する(この際、シグナル検知部1-3は、検知用レーザーを照射した際に得られるシグナルを検知する)。次に、ステップ1012で、処理部100は、シグナル検知部1-3が検知したシグナルに基づき、検知用レーザーを照射したマイクロウェル内に存在する細胞に係る細胞情報を、情報記憶部150に一時記憶する(なお、ここでは一例として、ウェル内に細胞が存在しない場合でも、細胞情報として一時記憶される態様としているが、ウェル内に細胞が存在しない場合には該当するマイクロウェルに関しての細胞情報を記憶しない構成としてもよい)。次に、ステップ1014で、処理部100は、すべてのマイクロウェルに対する検知用レーザーの照射が終了したか否か(nがfinまで到達したか否か)を判断する。ステップ1014でYesの場合、ステップ1018に移行する。他方、ステップ1014でNoの場合、ステップ1016で、処理部100は、nに1を加算し、ステップ1008に移行する。次に、ステップ1018で、細胞情報判定部160は、一時記憶されたすべての細胞情報{本例では、マイクロウェルの総数(n個)に等しい数の細胞情報}を参照し、予め設定された判定情報に基づき、各細胞が所望の細胞であるか否かを判定する。次に、ステップ1020で、細胞情報判定部160は、マイクロウェル内に所望の細胞が存在するか否かを判断する。ステップ1020でYesの場合、処理部100は、所望の細胞が存在するマイクロウェルの位置情報を、情報記憶部150に一時記憶し、ステップ2000に移行する。 [0046] 他方、ステップ1001及びステップ1020でNoの場合には、細胞解析制御処理(ステップ1000)を終了する。 [0047] なお、上述のように、レーザー照射部1-2を複数設ける、又は、レーザー照射条件を変更する等して、複数種の検知用レーザーを用いた解析を行う場合には、ステップ1006~ステップ2000までを繰り返し行ってもよい。 [0048] ここで、本例では、変数nとマイクロ流体デバイス1-1内の各マイクロウェルの位置情報とが結び付けられているが、マイクロウェルの位置情報は、マイクロウェル自体の位置情報であってもよいし、マイクロウェルが設けられた面を適宜に区分(グループ化)し、その区分に関する情報であってもよく、何ら限定されない。また、このようなマイクロウェルの位置情報は、処理部100内に予め組み込まれたものであってもよいし、光学的な手法等によりマイクロウェルの位置を自動で判断可能としてもよい。 [0049] なお、レーザー照射部1-2の移動に際しては、レーザー照射部1-2が、一つのマイクロウェルに対する解析を終了した後に次のマイクロウェルに移動する本例の構成(レーザー照射部1-2の停止と移動とが繰り返される構成)には限定されない。例えば、レーザー照射部1-2が、複数のマイクロウェルを跨いで連続的に移動可能な構成(スキャナーのように、一定範囲の解析を等速で実行する構成)であってもよい。この場合、マイクロウェルの位置が存在せずとも、所望の細胞情報が取得された位置をマイクロウェルの位置情報として読み替え可能となるため、マイクロウェルの位置情報の予めの設定等は不要となる(解析の開始条件や終了条件等を適宜変更すればよい)。 [0050] また、本例では一つのマイクロウェルに対して一回のレーザー照射を行うことを想定しているが、前述のように、一度のレーザー照射にて複数のマイクロウェルに対する解析を可能な構成であってもよい。特に、各マイクロウェルに一対一対応する複数のレーザー照射部を有する場合や、一度のレーザー照射にてすべての複数のマイクロウェルに対する解析を可能な構成の場合等には、レーザー照射部1-2が停止したまますべての細胞情報を取得可能となるため、レーザー照射部1-2は移動せずともよい。また、本例では、レーザー照射部1-2自体が移動する例を示しているが、前述のように、レーザー照射部1-2を首振りさせたり、反射板により照射角度を変更する等により、解析を行うマイクロウェルを変更する構成であってもよい。 [0051] また、前述のように、解析工程で用いるレーザー照射部1-2から照射される検知用レーザーは、レーザー光に限定されず、細胞情報を取得可能な適宜の情報ソース波を照射可能な機能を有すればよく、なんら限定されない。更に、前述のように、レーザー照射部1-2は、複数の情報ソース波を発振可能な構成(即ち、発振する波長や周波数等を変更可能な構成や、発振端子を複数備える構成)であってもよいし、発振する情報ソース波の種類に応じて、複数のレーザー照射部1-2を備えていてもよい。 [0052] また、レーザー照射部1-2の構成を変更した場合、シグナル検知部1-3の構成も適宜変更すればよく、シグナル検知が可能であれば何ら限定されない。例えば、簡単には、すべての複数のマイクロウェルに係る細胞情報を固定された一つのシグナル検知部1-3にて検知可能なように構成してもよい(この場合、シグナル検知部1-3の移動に係る制御等は不要となる)。また、複数の情報ソース波による解析を行う場合、シグナル検知部1-3は、一つの情報ソース波に対して一つのシグナル検知部1-3を有する構成であってもよいし、一つのシグナル検知部1-3によって複数のシグナルを検知可能な構成であってもよい。 [0053] ここで、細胞解析制御処理(ステップ1000)においては、ステップ1004後に、細胞含有液(第一液)中の成分をゲル化させるために、後段の処理を待機するよう構成してもよい(又は、ゲル化を促進させる処理を介在するものであってもよい)。また、マイクロ流体デバイス1-1を複数用意し、あるマイクロ流体デバイス1-1に対してステップ1002及びステップ1004に係る処理を実行した後に、連続して、別のマイクロ流体デバイス1-1に対してステップ1002及びステップ1004に係る処理を実行可能なように構成してもよい。換言すれば、あるマイクロ流体デバイス1-1における細胞含有液中の成分のゲル化に要する待機時間中に、別のマイクロ流体デバイス1-1に対してステップ1002及びステップ1004に係る処理を実行可能としてもよい。この場合、更に、マイクロ流体デバイス1-1内の細胞含有液中の成分がゲル化されたものから順次、次の処理に移行するよう構成してもよい。 [0054] 次に、図11は、セルソーター1における、細胞取得制御処理(ステップ2000)のフローチャートである。 [0055] 先ず、ステップ2002で、処理部100は、情報記憶部150を参照し、所望の細胞が存在すると判断された所定のマイクロウェルの位置情報を読み出す。次に、ステップ2004で、処理部100は、ゲル分解用光照射部1-4の初期設定処理を行う(変数mと、マイクロ流体デバイス1-1における所定のマイクロウェルの位置情報と、が結び付けられた状況下、mに1を代入する)。なお、本例では、ステップ2002にて読み出した所定のウェルの位置情報のうち、マイクロ流体デバイス1-1の最も上流側の位置を初期位置(m=1)としている。次に、ステップ2006で、ゲル分解用光照射位置制御部121-2は、ゲル分解用光照射部1-4をmの位置に移動させる。次に、ステップ2008で、ゲル分解用光照射制御部121-1は、ゲル分解用光照射部1-4から、mの位置に存在するマイクロウェルに対してゲル分解用レーザーを照射する。次に、ステップ2010で、送液制御部130は、送液処理として、マイクロ流体デバイス1-1内に、送液部2から液(例えば生理食塩水)を送液する(この際、分解されたゲル及び当該ゲルに含まれる細胞はマイクロウェル外に移送される)。次に、ステップ2012で、細胞回収制御部140は、細胞取得処理として、細胞回収部3を制御し、送液された液と共に、分解した前記ゲル及びゲル内に含まれる細胞を、細胞回収部3内に回収する。次に、ステップ2014で、処理部100は、すべての所定のマイクロウェルに対して、ゲル分解用レーザーの照射を行ったか否かを判断する。ステップ2014でYesの場合、細胞取得制御処理2000を終了する。他方、ステップ2014でNoの場合、ステップ2016で、処理部100は、mに1を加算し、ステップ2006に移行する。 [0056] また、本例では一つのマイクロウェルに対して一回のゲル分解用レーザーの照射を行うことを想定しているが、各マイクロウェルに対応する複数のレーザー照射部を有する場合等、一度のレーザー照射にて複数のマイクロウェルに対するゲル分解を可能な構成であってもよい。また、本例では、ゲル分解用光照射部1-4自体が移動する例を示しているが、前述のように、ゲル分解用光照射部1-4を首振りさせたり、反射板により照射角度を変更する等により、ゲル分解を行うマイクロウェルを変更する構成であってもよい(この場合、ゲル分解用光照射部1-4が停止したまますべてのウェルにおけるゲル分解が可能となるため、ゲル分解用光照射部1-4は移動せずともよい)。 [0057] また、本例では、細胞解析制御処理(ステップ1000)と細胞取得制御処理(ステップ2000)とを連続した処理としているが、これらは独立した処理であってもよい。 [0058] なお、本例では、検出工程及び解析工程までを一括して自動で行うシステムの一例について説明したが、これには限定されず、その一部において、手動での処理が介在するシステムであってもよい。以下に、そのようなシステムの一例について説明する。 [0059] 次に、図12は、本発明の一例であるセルソーター1における、細胞解析制御処理(S1000)の変更例に係る、細胞解析制御処理(S1000-2)のフローチャートである。ここでは、細胞解析制御処理(S1000)からの変更点のみ説明する。 [0060] 先ず、ステップ1014でYesの場合、ステップ1019-2に移行する。次に、ステップ1019-2で、表示制御部170は、情報記憶部150を参照し、表示装置4に細胞情報に係る情報を表示する。次に、ステップ1020-2で、処理部100は、後述する選択情報(本例では、操作者が入力端末等を用いて処理部100に入力した情報)に基づき、マイクロウェル内に所望の細胞が存在すると判断されたか否かを判断する。ステップ1020-2でYesの場合、細胞取得制御処理(ステップ2000)に移行する。 [0061] なお、本変更例においては、ステップ1019-2とステップ1020-2との間で処理が中断され得る。ステップ1020-2の前、即ち処理が中断されている間に、操作者が、例えば、表示装置4(例えば、ディスプレイ)に表示された細胞情報を観測しながら、所望の細胞が存在するか否かの判断を行う。当該判断の結果に係る選択情報(所望の細胞が存在する所定のマイクロウェルがあるか否か及び所定のマイクロウェルの位置等)は、入力端末等を用いて処理部100(情報記憶部150)に一時記憶され、ステップ1020-2で処理部100に参照される。なお、このように、細胞解析制御処理(ステップ1000-2)を行う(操作者が細胞情報に関する判定を行う)場合には、処理部100は細胞情報判定部160を有さずともよい。 [0062] このように、セルソーター1は、その一部に手動の操作が行われる態様(操作者が適宜判断を行い、当該判断等に基づき、各種処理を行う態様)であってもよい(他にも、例えば、細胞含有液の送液処理、油の送液処理、送液(例えば生理食塩水)処理、細胞取得等は、適宜手動で行われてもよい)。 実施例 [0063] 以下、実施例を参照しながら、本発明をより具体的に説明する。尚、本発明は実施例に限定されるものではない。 [0064] <実施例1> (ゲル材料の合成) 概略、図13の合成スキームに基づき、本実施例で使用するゲル材料を合成した。以下、本実施例で使用するゲル材料である4-アームPEG-アジドと4-アームPEG-DBCOの詳細な合成方法を記載する。尚、原料の4-アームPEG-アミンの繰り返し数nは約111である。 ・化合物2の合成 反応は遮光下で行った。50 mL枝付なすフラスコにN-Hydroxysuccinimide(NHS)を1.15 g(10.0 mmol, 2 eq)と1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride(EDC)を1.99 g(10.0 mmol, 2 eq)を入れて20 分間ドライアップしたのち窒素置換をし、dry DMFを18 mL加えた。室温で撹拌してNHSとEDCを溶解させてから、4-[4-(1-Hydroxyethyl)-2-methoxy-5-nitrophenoxy]butyric acid (1)を1.51 g(5.01 mmol, 1 eq)入れ、さらにdry DMF 2 mLを加えた。室温で10.5 時間撹拌させてから反応の終了を確認し、溶液をエバポレーターで濃縮した。濃縮された溶液は濃い黄褐色であり、純水を加え、析出した薄黄色固体を吸引濾過で回収した。一晩真空乾燥させると、薄黄色固体が得られた。収量は1.97 g、収率は103%であった。収率が100%を超えてしまったのは、溶媒のDMFが除ききれなかったためと考える。生成物の同定は1H-NMR(CDCl3)で行った。1H NMR (600 MHz, CDCl3, TMS) δ = 7.59 (s, 1H), 7.31 (s, 1H), 5.57 (q, J = 5.9 Hz, 1H), 4.18 (t, J = 6.2 Hz, 2H), 3.99 (s, 3H), 2.90 (t, J = 8.5 Hz, 2H), 2.86 (br s, 4H), 2.29 (quin, J = 6.2 Hz, 2H), 1.56 (d, J = 6.4 Hz, 3H) ・化合物3の合成 反応は遮光、アルゴン雰囲気下で行った。50 mLなすフラスコに化合物2を1.11g(2.80 mmol, 1 eq)を入れてドライアップしてからアルゴン雰囲気下にし、dry DMFを10 mL加え、室温で撹拌した。溶液は橙色透明であった。3 - azidopropyl - 1 - amineを0.700 g(7.00 mmol, 2.5eq)を加えて室温で18 時間反応させ、溶液をエバポレーターにかけたところ、橙色透明のオイルとなった。これを一晩真空乾燥させた。100 mLの酢酸エチルで希釈させ、純水で三回washを行った。有機相をMgSO4で乾燥させ、濾過した後に溶液をエバポレーターにかけ、橙色透明のオイルを得た。真空乾燥を行い、褐色固体を得た。収量は0.97 g、収率は91%であった。生成物の同定は1H-NMR(CDCl3)で行った。1H NMR (600 MHz, CDCl3, TMS) δ = 7.56 (s, 1H), 7.31 (s, 1H), 5.91 (brs, 1H), 5.56 (q, J = 10.3 Hz, 1H), 4.11 (t, J = 8.8 Hz, 2H), 3.99 (s, 3H), 3.35 (dt, J = 10.3 Hz, 4H), 2.42 (t, J = 10.3 Hz, 2H), 2.20 (quin, J = 8.8 Hz, 2H), 1.78 (quin, J = 10.3 Hz, 2H), 1.56 (d, J = 10.2 Hz, 3H) ・化合物4の合成 反応は遮光、アルゴン雰囲気下で行った。10 mL二口なすフラスコにPL-azide(3)を61.7 mg(0.17 mmol, 1 eq)、4-Nitrophenyl Chloroformateを112 mg(0.79 mmol, 3.3 eq)入れてドライアップし、アルゴン雰囲気下にした。dry CH2Cl2を2 mL加えて撹拌したところ、橙色透明溶液であった。ここに、dry トリエチルアミンを110 mL(d=0.726 g/cm3, 0.80 mmol, 4.7 eq)加えて1.5 時間撹拌したところ、原料である化合物3の消失を確認した。直接真空ポンプへつなぎ、トリエチルアミンとCH2Cl2を留去したところ、黄緑色のオイルとなった。ヘキサン:酢酸エチル = 1 : 1→酢酸エチル100%でシリカゲルカラムクロマトグラフィーを行った。カラム径は2 cm、カラム長は10 cmで行った。目的物の含まれるフラクションをエバポレーターにかけ、真空乾燥を行い、薄黄色固体を得た。収量は46.3 mg、収率は50%であった。生成物の同定は1H-NMR(CDCl3)とESI-MS(pos)で行った。1H NMR (600 MHz, CDCl3, TMS) δ = 8.26 (d, J = 9.1 Hz, 2H), 7.62 (s, 1H), 7.35 (d, J = 9.1 Hz, 2H), 7.12 (s, 1H), 6.53 (quin, J = 6.4 Hz, 1H), 5.82 (brs, 1H), 4.14 (t, J = 6.2 Hz, 2H), 4.01 (s, 3H), 3.36 (m, 4H), 2.42 (t, J = 7.1 Hz, 2H), 2.21 (quin, J = 6.5 Hz, 2H), 1.79 (m, 5H) ・4-アームPEG-アジドの合成 反応は遮光、アルゴン雰囲気下で行った。10 mL二口なすフラスコにPTE-200PA(SUNBRIGHT社、末端NH2四分岐PEG、Mw~20000)を152mg (7.5 mmol, 1 eq)と化合物4を46.3 mg(84.7 mmol, 11 eq)入れてドライアップし、アルゴン雰囲気下にした。dry CH2Cl2を1.5 mL加えて室温で10.5 時間撹拌し原料であるPTE-200PAの消失を確認した。溶液を氷浴上でジエチルエーテルが30 mLずつ入ったチューブに滴下したところ、薄黄色の沈殿が生じた。チューブを遠心(4 °C, 10 krpm, 10 min)し、上澄みをデカンテーションして室温放置した後、デシケーター内で真空乾燥させジエチルエーテルを除去した。そこに50 mMのTris-HCl buffer (pH8.0)を3 mLずつとMilliQ3 mL加え、チューブを遠心(4 °C, 5000rpm, 3 min)して、上清をMiiliQ 1.8 L、分子量分画3500の透析膜で3.5日間透析を行った。凍結乾燥により目的物の4-arm PEG-PL-azideの白色固体を得た。収量は80 mg、収率は49%であった。生成物の同定と分子量測定はそれぞれ1H-NMR(CDCl3)とMALDI-TOF MS(matrix : sinapinic acid)で行った。1H NMR (600 MHz, CDCl3, TMS) δ = 7.58 (s, 4H), 7.02 (s, 4H), 6.34 (m, 4H), 6.00 (brs, 4H), 5.52 (brs, 4H), 3.25-4.11 (brm), 2.41 (m, 8H), 2.20 (m, 8H), 1.60-1.88 (brm, 12H+H2O) ・4-アームPEG-DBCOの合成 反応は窒素雰囲気下で行った。15 mL二口なすフラスコにPTE-200PAを150 mg(7.5 mmol, 1 eq)、DBCO NHS-esterを21.5 mg(52.5 mmol, 7 eq)入れてドライアップしN2置換してから、dry CH2Cl2 2 mLに溶解させ、室温で18時間撹拌した。原料であるPTE-200PAの消失を確認しジエチルエーテルを20 mLずつ入れた2本の50 mLの遠心チューブに氷浴で反応溶液を入れエーテル沈殿させたところ、白色沈殿が生じた。4 °C、10 krpmで7分間遠心して上澄みをデカンテーションして除き、室温で放置して乾燥させた後さらにデシケーター中で真空乾燥させた。それぞれのチューブに調整した50 mMのTris / HCl (pH = 8.0)のバッファーを3 mLずつ加えてさらにMilliQを2 mLずつ加えて懸濁させた。溶液を4 °C、3 krpmで3分間遠心して、3500分子量分画の透析膜を用いて、MilliQ 2 Lで透析を行った。水交換は、19.5 時間後と22.5 時間後に行った。凍結乾燥を行い、白色固体を得た。収量は130 mg、収率は83%であった。生成物の同定と分子量測定はそれぞれ1H-NMR(CDCl3)とMALDI-TOF-MS(matrix : sinapinic acid)で行った。1H NMR (600 MHz, CDCl3, TMS) δ = 7.68 (d, J = 7.3 Hz, 4H), 7.52 (d, J = 8.2 Hz, 4H), 6.23 (brs, 4H), 5.15 (d, J = 14.1 Hz, 4H), 3.25-4.65 (brm), 3.22 (q, J = 5.9 Hz, 8H), 2.79 (m, 4H), 2.42 (m, 4H), 2.17 (m, 4H), 1.95 (m, 4H) (細胞含有液の調製) 複数のカルセイン染色Ba/F3細胞を生理食塩水に入れた後、図4に示した2種類のゲル材料(4-アームPEG-PL-アジド及び4-アームPEG-DBCO)を添加し、細胞含有液を得た。尚、細胞密度は50,000,000個/mLで、ゲル材料の濃度はともに、0.9w/v%である。 (マイクロウェルへの細胞固定) 調製した細胞含有液を、図1に示すマイクロ流体デバイスAの導入口A1から当該デバイス(マイクロウェル径=20μm)内に注入した。当該操作を複数回実施した。その後、4℃で5分間インキュベートし、マイクロウェル内へ細胞を沈降させた。その後、フロリナートFC-40(商品名)を導入口A1から当該デバイス内に注入し、マイクロウェル外に余剰に存在するものを排出口A2から排出した。その後、4℃で20分間インキュベートし、マイクロウェル内の細胞含有液をゲル化させた。その結果、図14に示すように、マイクロウェルの64%に細胞が収納されていることが確認できた。 (マイクロウェルに固定された細胞解析) マイクロウェルに固定されたカルセイン染色Ba/F3細胞にレーザーを照射することにより発せられた蛍光を測定し、細胞の大きさや形状等を解析した。 (マイクロウェルに固定された細胞の除去) 前記細胞解析後、細胞が固定された特定のマイクロウェルに、波長が405nmの光を照射し、当該細胞を包埋していたゲルを分解させた。その後、マイクロ流体デバイスAの導入口A1から生理食塩水を流した。その結果、前記特定のマイクロウェル内に固定された前記細胞を選択的に取得することができた。 <実施例2> 実施例1と同様の手法にて、但し、赤色蛍光色素を修飾した光分解性ハイドロゲルを用いて、カルセイン染色を施したHL60細胞を固定化した。その後、特定の細胞群について光(405nm)を照射し、これらのマイクロウェル内のゲルを溶解させた。その後、液体(生理条件の緩衝液)を流すことで、これら細胞群を選択取得した。ここで、図15aは、マイクロウェル内に光分解性ハイドロゲルで固定化した細胞の画像(緑色蛍光及び赤色蛍光像と明視野像との重ね合わせ画像)であり、四角で囲った部分が光(405nm)を照射したマイクロウェルである。また、図15bは、光照射後、液体(生理条件の緩衝液)で所定回数(本例では15回)洗浄した後の、マイクロウェル内に光分解性ハイドロゲルで固定化した細胞の画像である。図15bから分かるように、当該実施例では、複数(本例では7個)の細胞群を纏めて取得できた。 <実施例3> 実施例1及び2と同様の手法にて、但し、緑色蛍光及び赤色蛍光タンパク質(EGFP及びKusabira-Orange)発現Ba/F3細胞について試験した。図16は、マイクロウェルに固定化された蛍光タンパク質発現Ba/F3細胞の蛍光顕微鏡像である{aは、緑色蛍光像と赤色蛍光像との重ね合わせ画像(低倍率)であり、bは、緑色蛍光及び赤色蛍光像と明視野像の重ね合わせ画像(高倍率)である}。尚、図からは分かり難いが、緑色蛍光のみを発するマイクロウェル、赤色蛍光のみを発するマイクロウェル、赤色蛍光及び緑色蛍光を発するマイクロウェルが存在する。尚、緑色を主に発している細胞から赤色の蛍光も発しているのは、赤色蛍光を発するレーザー光を照射した際に細胞自身から散乱光として発せられた光が検出されたためである。逆に、緑色蛍光を発するレーザー光を照射した際は、EGFP発現の細胞からのみ緑色蛍光がでており、Kusabira-Orange発現の細胞からは緑色蛍光は出ていない。また、わずかではあるが、細胞が二つ入ったマイクロウェルも存在し、蛍光像と明視野像を照らし合わせることでこのようなマイクロウェルを識別できる。 <実施例4> 実施例3にて作製した、マイクロウェルに光分解性ハイドロゲルで固定化された蛍光タンパク質発現Ba/F3細胞に対して、(1段階目)赤色蛍光を有する細胞のみを選択的に取り出し、次いで、(2段階目)緑色蛍光を有する細胞のみを選択的に取り出した。ここで、図17a~dは、マイクロウェル内に光分解性ハイドロゲルで固定化した細胞の画像(緑色蛍光及び赤色蛍光像と明視野像との重ね合わせ画像)である。尚、図からは分かり難いが、緑色蛍光のみを発するマイクロウェル、赤色蛍光のみを発するマイクロウェル、赤色蛍光及び緑色蛍光を発するマイクロウェルが存在する。そして、図17aは、1段階目の赤色蛍光細胞の選択取出し前の画像(四角で囲った部分=赤色蛍光細胞が存在しているウェル)であり、図17bは、1段階目の赤色蛍光細胞の選択取出し後の画像(四角で囲った部分=赤色蛍光細胞が存在していたウェル)である。更に、図17cは、2段階目の緑色蛍光細胞の選択取出し前の画像(四角で囲った部分=緑色蛍光細胞が存在しているウェル)であり、図17dは、2段階目の緑色蛍光細胞の選択取出し後の画像(四角で囲った部分=緑色蛍光細胞が存在していたウェル)である。 |
※
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。
『 CELL SORTING METHOD AND FLOW CYTOMETRY AND CELL SORTER USING SAME 』に関するお問合せ
- 国立研究開発法人科学技術振興機構(JST) 知的財産マネジメント推進部
- URL: http://www.jst.go.jp/chizai/
-
E-mail:
- Address: 〒102-8666 東京都千代田区四番町5-3
- TEL: 03-5214-8486
- FAX: 03-5214-8417