Top > Search of International Patents > PLANETARY GEAR DEVICE AND PROGRAM FOR DESIGNING PLANETARY GEAR DEVICE

PLANETARY GEAR DEVICE AND PROGRAM FOR DESIGNING PLANETARY GEAR DEVICE meetings

Foreign code F180009317
File No. (S2016-0784-N0)
Posted date Jan 24, 2018
Country WIPO
International application number 2017JP021022
International publication number WO 2017213151
Date of international filing Jun 6, 2017
Date of international publication Dec 14, 2017
Priority data
  • P2016-112434 (Jun 6, 2016) JP
Title PLANETARY GEAR DEVICE AND PROGRAM FOR DESIGNING PLANETARY GEAR DEVICE meetings
Abstract This planetary gear device is made by combining a plurality of planetary gear mechanisms, wherein the planetary gear device has first and second planetary gear mechanisms that share a carrier, each planetary gear mechanism is configured from an internal gear (Ik) (k being an integer of 2 or greater) and a planetary gear (Pk) that meshes with the internal gear (Ik) and circumferentially orbits the internal gear, the planetary gear (Pk) of each planetary gear mechanism comprises a spur gear in the form of an external gear, the planetary gears (Pk) of the planetary gear mechanisms either share a center shaft or are linked integrally at the center shafts so as to integrally rotate about a common rotational center axis line, or are integrated together so as to integrally rotate about a common rotational center axis line, and the number of teeth (zp1) of a first planetary gear constituting the first planetary gear mechanism is different from the number of teeth (zp2) of a second planetary gear constituting the second planetary gear mechanism. The number of teeth of the internal gear (I1) is (zi1), the number of teeth of the internal gear (I2) is (zi2), the profile shift coefficient of the first planetary gear is (xp1), the profile shift coefficient of the internal gear that meshes therewith and constitutes the first planetary gear mechanism is (xi1), the profile shift coefficient of the second planetary gear is (xp2), the profile shift coefficient of the internal gear that meshes therewith and that constitutes the second planetary gear mechanism is (xi2), the motive power transmission efficiency of the planetary gear device including the profile shift coefficients (xp1, xi1, xp2, xi2) is (η), the profile shift coefficient of the internal gear (I1) is (xi1), the profile shift coefficient of the internal gear (I2) is (xi2), and the profile shift coefficients have a relationship of a combination of values selected from among a combination of profile shift coefficients in which the motive power transmission efficiency η is maximal or submaximal within an allowable range of design specifications given in advance.
Outline of related art and contending technology BACKGROUND ART
Industrial machinery, vehicle, robot, such as OA equipment such as various kinds of drive system or power transmission system (speed increase) constitutes the apparatus, a sun gear, planetary gear, internal gear and the planetary gear mechanism composed of carrier has been known (for example, see Non-Patent Document 1). The planetary gear mechanism, and a relatively high reduction ratio can be realized, compared with the speed reduction ratio and transmission torque mechanism or the structure is relatively compact, in addition, the input shaft and output shaft are arranged coaxially and it is possible, a wide variety of the drive device or a driving system of the power transmission device or the power transmission system has been widely put into practical use.
The planetary gear mechanism, for example, the simple planetary gear mechanism, a Ravigneaux planetary gear mechanism, such as a complex planetary gear mechanism and the planetary gear mechanism is known that the strange. In general, high efficiency, high torque and a high reduction ratio gear mechanism, a variety of industrial equipment and household appliances because of their demand, another planetary gear mechanism, a wave motion gear mechanism (harmonic gear), such as cycloidal gear mechanism of the gear mechanism has also been developed, been put into practical use.
The reduction ratio is obtained by the various gear mechanism, is generally believed as follows. (1) (Step 1) the simple planetary gear mechanism: reduction ratio (step 1) about (2) a Ravigneaux planetary gear mechanism 1/4-1/10: reduction ratio of about (3) 1/10 complex planetary gear mechanism: strange about (4) 1/100 reduction ratio of the planetary gear mechanism: reduction ratio of approximately (5) 1/100 the wave motion gear mechanism: reduction ratio of the gear mechanism of a cycloid 1/30-1/200 (6): 1/60-1/200 reduction ratio
In such a wide variety of gear mechanism, a strange planetary gear mechanism, the wave motion gear mechanism and a cycloid gear mechanism, a relatively special structure because a structure in which a gear is used, a decrease in productivity, it is difficult to improve the degree of freedom in design of, the difficulty of improving the structural strength, or, the problem of expensive manufacturing cost and the like is liable to occur, therefore, generally using a simple spur gear of the planetary gear mechanism is a planetary gear mechanism and the like, productivity, the manufacturing cost, degree of freedom in design, such as considered desirable from the viewpoint of structural strength. In particular, a combination of a plurality of planetary gear mechanism is a complex planetary gear mechanism, as described above, since the reduction ratio of about 1/100 can be realized, requires a high reduction ratio gear of the planetary gear set may be preferably adopted as a mechanism considered.
On the other hand, in the planetary gear mechanism, a plurality of meshes with the gear and the sun gear and planet gears are so arranged in the circumferential direction, the planetary gear mechanism is the mechanism for establishing the constraints or as design conditions, the coaxial condition, the condition for assembling the adjacent conditions and the condition 3 is generally contemplated. Coaxial conditions, the sun gear, internal gear formed coaxially in the axial center of the carrier and a condition and, assembly conditions, are arranged at regular intervals a plurality of planetary gears meshing with the sun gear and the internal gear and is the condition, the adjacent condition, the planetary gear does not interfere with each other adjacent the condition.
Fig. 17 is, the sun gear, planetary gear, internal gear and the carrier of the planetary gear mechanism composed of a conventional conceptual view showing the structure of. Fig. 18 is, the sun gear, planetary gear, internal gear and the planetary gear mechanism with respect to a carrier, is a conceptual diagram showing a conventional configuration of the other. Fig. 19 is, the sun gear, planetary gear, internal gear and the planetary gear mechanism composed of a carrier in combination with a plurality of planetary gear mechanism with respect to the composite, is a conceptual view showing the structure of the prior art. Fig. 20 is, is not equipped with an inner gear, the sun gear, planetary gear and the carrier of the planetary gear mechanism composed of a combination of a plurality of planetary gear mechanism with respect to the composite, is a conceptual view showing the structure of the prior art.
Fig. 17 is, the configuration of the simple planetary gear mechanism are shown. The number of teeth of sun gear S zs 、planetary gear P the number of teeth zp 、the number of teeth of the internal I zi 、P N the number of planetary gears (a natural number) and respectively set, I is fixed to the gear, the sun gear S input shaft, output shaft respectively set and a carrier H case, the reduction ratio of the planetary gear mechanism, the coaxial condition, the condition for assembling the adjacent conditions and, represented by (1) the following formula. Incidentally, in Fig. 17, the code K is, the sun gear S and the internal gear in a broad sense means including I and the sun gear, the planetary gear mechanism shown in Fig. 17, the most common 2K-H belonging to the type.
Fig. 18 is, a Ravigneaux type planetary gear mechanism shown in the configuration. The number of teeth of sun gear S zs 、outward in the radial direction of the planetary gear P1 and the number of teeth zp1 、radially inwardly of the planetary gear P2 and the number of teeth zp2 、I z in the number of teeth of the geari 、planetary gear P1, P2 and 2N respectively set the number, I is fixed to the gear, the sun gear S input shaft, output shaft respectively set and a carrier H case, the reduction ratio of the planetary gear mechanism, the coaxial condition, and the condition for assembling the adjacent condition, represented by (2) the following formula. In addition, a Ravigneaux type planetary gear mechanism, the first planetary gear P2 of the stage 1 by inverting the rotation direction, and a carrier H as a reference, and the sun gear S and I in the same direction so that the gear, the reduction ratio in the denominator of the equation shown (2), the number of teeth of sun gear S zs applied to the sign is reversed. In addition, adjacent condition, defined by a plurality of equations, this is, each equation can be adapted to any of the adjacent means that the condition is satisfied.
(2) In the equation, φ is, the sun gear S and the center axis of the center axis of the planetary gear P1 and a straight line connecting, the sun gear S and the center axis of the planetary gear P2 and a straight line connecting the center axis of an angle intersect.
Fig. 17 and Fig. 18 the planetary gear unit is shown, in the same plane of the gear train is constituted by, as described above, the rotation axis direction within the plane spaced by a distance from each of the planetary gear mechanism and the planetary gear mechanism is disposed in the composite, the simple planetary gear mechanism and, as compared with the Ravigneaux planetary gear mechanism, in order to achieve a high reduction ratio gear mechanism can be used preferably considered. However, in a complex planetary gear mechanism, a planetary gear mechanism are juxtaposed respectively to satisfy the condition 3 described above Therefore, the above-described design conditions are satisfied can be realized in a high reduction ratio on the, in practice, very difficult. Therefore, the planetary gear mechanism to reduce the design conditions of the intended configuration of the composite planetary gear mechanism, for example, in JP-1-3 has been proposed.
Patent Document 1 is the composite to the planetary gear mechanism, the sun gear, planetary gear and the internal gear 2 having a set of planetary gear mechanisms, each of the planetary gear mechanism and the planetary gear are integrally and coaxially, the dislocation of the use by a structure in which design conditions are relaxed. In addition, in Patent Document 2 is a complex planetary gear mechanism, the sun gear, a planetary gear and the internal gear 2 a planetary gear mechanism and a set of coupled, non-axial symmetry with respect to the planetary gear arrangement can be designed by a structure in which a condition may be alleviated.
Fig. 19 is, as described in Patent Document 3 a composite conceptual view showing the structure of the planetary gear mechanism of the present invention. Patent Document 3 is a complex planetary gear mechanism, as shown in Fig. 19, the sun gear of the planetary gear mechanism S1 a set of 2, and S2 are interconnected, each planetary gear P1 by a common carrier H, the spindle and the bearing P2 is supported by the bearing or independently, to improve the degree of freedom in the design and configuration.
The above-described various forms of the planetary gear mechanism, both, an inner gear of the planetary gear mechanism as a representative has a structure, as other configurations of the planetary gear mechanism, as shown in Fig. 20, an inner gear of the planetary gear mechanism is not provided in the form of complex has been known.
Fig. 20 a complex planetary gear mechanism is shown, in the planetary gear mechanism shown in Fig. 18 in the formula I Ravigneaux gear S2 (Fig. 18) (Fig. 20) to the sun gear of the planetary gear mechanism as an alternative to grasp. In the planetary gear mechanism shown in Fig. 20, the sun gear S1, is S2, the carrier rotates in the opposite direction H as a reference.
The number of teeth of sun gear S1 zs1 、the sun gear S2 and the number of teeth zs2 、planetary gear P1 and the number of teeth zp1 、number of teeth of the planetary gear P2 zp2 、planetary gear P1, and the number of P2 is set to 2N, the sun gear S2 is fixed, the input shaft S1 a sun gear, carrier H is set to the output shaft, the reduction ratio of the planetary gear mechanism, the coaxial condition, the condition for assembling the adjacent conditions and, represented by (3) the following formula. In addition, adjacent condition, as defined by the formula (3) of the plurality of equations, this is, for each expression should be adapted to any of the means. In addition, in the formula below, is φ, the sun gear S1, planetary gear S2 and the center axis of the straight line connecting the center axis of the P1, the sun gear S1, planetary gear S2 and the center axis of the central axis P2 intersects a straight line connecting the angle.
In addition, a modification of the planetary gear mechanism shown in Fig. 20, the shared central axis 2 and two planet gears has a different number of teeth of the planetary gear mechanism is a composite, as described in Patent Document 4 or the like.
Scope of claims (In Japanese)[請求項1]
複数の遊星歯車機構を組み合せてなる遊星歯車装置において、
キャリアを共有する第1及び第2の遊星歯車機構を有し、
各遊星歯車機構は、内歯車Ik(kは2以上の整数)と、前記内歯車Ikに噛合し且つ前記内歯車の周方向に公転運動する遊星歯車Pkとから構成され、
前記遊星歯車機構それぞれの遊星歯車Pkは、外歯車形態の平歯車からなり、
前記遊星歯車機構それぞれの遊星歯車Pkは、遊星歯車装置全体を2段歯車機構に構成すべく、共通の回転中心軸線を中心に一体的に回転するように中心軸を共有し又は中心軸同士を一体的に連結され、或いは、共通の回転中心軸線を中心に一体的に回転するように互いに一体化しており、
前記第1の遊星歯車機構を構成する第1遊星歯車の歯数(zp1)、前記第2の遊星歯車機構を構成する第2遊星歯車の歯数(zp2)が異なるようにした遊星歯車装置であり、前記内歯車I1の歯数がzi1であり、前記内歯車I2の歯数がzi2であり、
前記第1遊星歯車の転位係数がxp1、それに係合し前記第1の遊星歯車機構を構成する内歯車の転位係数がxi1、前記第2遊星歯車の転位係数がxp2、それに係合し前記第2の遊星歯車機構を構成する内歯車の転位係数がxi2、前記転位係数xp1、xi1、xp2、xi2を含む該遊星歯車装置の動力伝達効率がηであり、前記内歯車I1の転位係数がxi1であり、前記内歯車I2の転位係数がxi2であり、
前記転位係数が、予め与えられた設計諸元の許容範囲で、前記動力伝達効率ηが最大化又は準最大となる前記転位係数の組み合せの中から選び出した値の組み合わせの関係である遊星歯車装置。
[請求項2]
歯数(zs1)の太陽歯車S1を有し、
前記遊星歯車Pkそれぞれは、該太陽歯車S1に噛合し、
前記太陽歯車S1の転位係数がxs1であり、
前記動力伝達効率ηは、
歯車の歯数(zs1、zp1、zp2、zi1、zi2)および前記転位係数(xs1、xp1、xp2、xi1、xi2)の組み合わせで表される場合、前記歯車の歯数(zs1、zp1、zp2、zi1、zi2)および前記転位係数(xs1、xp1、xp2、xi1、xi2)の組み合せの中から選び出した前記動力伝達効率ηが最大化又は準最大となる値の組み合わせである、請求項1に記載の遊星歯車装置。
[請求項3]
前記動力伝達効率ηは、
歯車の歯数(zp1、zp2、zi1、zi2)および前記転位係数(xp1、xp2、xi1、xi2)の組み合わせで表される場合、前記歯車の歯数(zp1、zp2、zi1、zi2)および前記転位係数(xp1、xp2、xi1、xi2)および前記中心軸間距離係数(Xc)の組み合せの中から選び出した前記動力伝達効率ηが最大化又は準最大となる値の組み合わせであり、
または、歯車の歯数(zp1、zp2、zi1、zi2)、前記転位係数(xp1、xp2、xi1、xi2)、および前記第1の遊星歯車機構と前記第2の遊星歯車機構の軸間距離を転位する量である中心軸間距離係数(Xc)の組み合わせで表される場合、前記歯車の歯数(zp1、zp2、zi1、zi2)および前記転位係数(xp1、xp2、Xc)の組み合せの中から選び出した前記動力伝達効率ηが最大化又は準最大となる値の組み合わせである、請求項1に記載の遊星歯車装置。
[請求項4]
前記動力伝達効率η(xp1,xi1,xp2,xi2,Xc)が、η0=η1・η2であり、歯数zikの内歯車からなる内歯車Ikの前記動力伝達効率ηkは、次式(数1)で表され、
[数1]
前記式(数1)において、添え字kは夫々の遊星歯車機構の歯車対を示し、前記μkは前記内歯車Ikと前記遊星歯車Pkの間の摩擦係数であり、前記ε0kは2つの前記内歯車Ikと前記遊星歯車Pkのかみ合い率を示し、
前記式(数1)において、ε0kは次式(数2)で表され、
[数2]
前記式(数1)において、前記ε1kは近寄りかみ合い率であり、前記ε2kは遠のきかみ合い率であり、
前記式(数2)において、ε1k、ε2kは次式(数3)で表され、
[数3]
前記式(数1)において、前記aWkはかみ合い圧力角、前記azpk、前記azikは夫々歯先圧力角であり、次式(数4)で表され、
[数4]
前記式(数4)において、前記rcは前記内歯車Ik及び前記遊星歯車Pkの中心軸間の距離であり、前記mkはモジュールであり、前記aは転位する前の基準圧力角であり、前記daik、前記dapkは夫々、前記内歯車Ik及び前記遊星歯車Pkの歯先円直径であり、前記dbik、前記dbpkは夫々、前記内歯車Ik及び遊星歯車Pkの基準円直径であり、次式(数5)で表され、
[数5]
前記式(数5)において、前記係数xinは前記歯車対P1、I1と前記歯車対P2、I2との軸間距離を合わせるための転位係数であり、前記係数xc1、xc2は夫々、前記歯車対P1、I1及び前記歯車対P2、I2の軸間距離を転位量Xcだけ変化させることにより生じる各歯車対の影響を表す転位係数であり、前記転位係数xp1、xp2、xi1、xi2との間に、次式(数6)の関係があり、
[数6]
前記式(数6)において、前記inv(a)は、インボリュート関数である、請求項3に記載の遊星歯車装置。
[請求項5]
前記遊星歯車機構は、太陽歯車を有しない構成である、請求項1、3、4のいずれか1項に記載の遊星歯車装置。
[請求項6]
前記遊星歯車機構は、太陽歯車を含む構成である、請求項1または請求項2に記載の遊星歯車装置。
[請求項7]
内歯車Iと、前記内歯車Iに噛合し且つ前記内歯車の周方向に公転運動する遊星歯車Pkと、歯数zs1の太陽歯車S1と、から構成され、キャリアを共有する第1の遊星歯車機構及び第2の遊星歯車機構であって、前記第1の遊星歯車機構を構成する第1遊星歯車の歯数がzp1、前記第2の遊星歯車機構を構成する第2遊星歯車の歯数がzp2、前記第1遊星歯車の転位係数がxp1、それに係合し前記第1の遊星歯車機構を構成する内歯車の転位係数がxi1、前記第2遊星歯車の転位係数がxp2、それに係合し前記第2の遊星歯車機構を構成する内歯車の転位係数がxi2、前記転位係数xp1、xi1、xp2、xi2を含む遊星歯車装置の動力伝達効率がηであり、前記太陽歯車S1の転位係数がxs1である前記遊星歯車装置を設計するコンピュータに、
生成可能な歯車数(zs1、zp1、zp2、zi1、zi2)の組を生成するステップと、
生成した前記歯車数(zs1、zp1、zp2、zi1、zi2)の組から最初の組を設定するステップと、
ベクトルx=(xs1、xp1、xp2、xi1、xi2)について初期値を与えるステップと、
勾配ベクトルv=(∂η/∂xs1、∂η/∂xp1、∂η/∂xp2、∂η/∂xi1、∂η/∂xi2)を求めるステップと、
v・q>0を満たすベクトルqを選ぶステップと、
前記ベクトルxの更新量γqが十分小さくなったか否かを判別するステップと、
前記更新量γqが十分小さくなっていないと判別した場合、前記ベクトルxにγqを加算して更新するステップと、
更新量γqが十分小さくなったと判別した場合、前記歯車数(zs1、zp1、zp2、zi1、zi2)の組と前記転位係数(xs1、xp1、xp2、xi1、xi2)の組み合わせのうち、前記動力伝達効率ηが最大又は準最大となる転位係数の組み合わせを選択するステップと、
前記動力伝達効率ηが最大となる選択した前記歯車数(zs1、zp1、zp2、zi1、zi2)の組と前記転位係数(xs1、xp1、xp2、xi1、xi2)の組み合わせを出力するステップと、
を実行させる遊星歯車装置の設計プログラム。
[請求項8]
内歯車Iと、前記内歯車Iに噛合し且つ前記内歯車の周方向に公転運動する遊星歯車Pkと、から構成され、キャリアを共有する第1の遊星歯車機構及び第2の遊星歯車機構であって、前記第1の遊星歯車機構を構成する第1遊星歯車の歯数がzp1、前記第2の遊星歯車機構を構成する第2遊星歯車の歯数がzp2、前記第1遊星歯車の転位係数がxp1、それに係合し前記第1の遊星歯車機構を構成する内歯車の転位係数がxi1、前記第2遊星歯車の転位係数がxp2、それに係合し前記第2の遊星歯車機構を構成する内歯車の転位係数がxi2、前記転位係数xp1、xi1、xp2、xi2を含む遊星歯車装置の動力伝達効率がηであり、前記第1の遊星歯車機構と前記第2の遊星歯車機構の軸間距離を転位する量である中心軸間距離係数がXcである前記遊星歯車装置を設計するコンピュータに、
生成可能な歯車数(zp1、zp2、zi1、zi2)の組を生成するステップと、
生成した前記歯車数(zp1、zp2、zi1、zi2)の組から最初の組を設定するステップと、
ベクトルx=(xp1、xp2、xi1、xi2)またはベクトルx=(xp1、xp2、Xc)について適当な初期値を与えるステップと、
勾配ベクトルv=(∂η/∂xp1、∂η/∂xp2、∂η/∂xi1、∂η/∂xi2)または勾配ベクトルv=(∂η/∂xp1、∂η/∂xp2、∂η/∂Xc)を求めるステップと、
v・q>0を満たすベクトルqを選ぶステップと、
前記ベクトルxの更新量γqが十分小さくなったか否かを判別するステップと、
前記更新量γqが十分小さくなっていないと判別した場合、前記ベクトルxに前記更新量γqを加算して更新するステップと、
前記更新量γqが十分小さくなったと判別した場合、前記歯車数(zp1、zp2、zi1、zi2)の組と前記転位係数(xp1、xp2、xi1、xi2)の組み合わせ、または前記歯車数(zp1、zp2、zi1、zi2)の組と前記転位係数(xp1、xp2、Xc)の組み合わせのうち、前記動力伝達効率ηが最大又は準最大となる転位係数の組み合わせを選択するステップと、
前記動力伝達効率ηが最大となる、選択した前記歯車数(zp1、zp2、zi1、zi2)の組と前記転位係数(xp1、xp2、xi1、xi2)の組み合わせ、または選択した前記歯車数(zp1、zp2、zi1、zi2)の組と前記転位係数(xp1、xp2、Xc)の組み合わせを出力するステップと、
を実行させる遊星歯車装置の設計プログラム。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • YOKOHAMA NATIONAL UNIVERSITY
  • Inventor
  • FUJIMOTO Yasutaka
  • KOBUSE Daiji
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
(In Japanese)掲載特許について詳しくお知りになりたい方はHPの「お問い合わせ」ページにてお問い合わせください。

PAGE TOP

close
close
close
close
close
close