Top > Search of International Patents > FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME

FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME

Foreign code F180009373
File No. (S2016-1027-N0)
Posted date Apr 19, 2018
Country WIPO
International application number 2017JP032179
International publication number WO 2018047882
Date of international filing Sep 6, 2017
Date of international publication Mar 15, 2018
Priority data
  • P2016-173221 (Sep 6, 2016) JP
Title FUNCTIONAL ELEMENT HAVING CELL SERIAL STRUCTURE OF π-TYPE THERMOELECTRIC CONVERSION ELEMENTS, AND METHOD FOR FABRICATING SAME
Abstract Provided is a functional element resistant to disconnection, comprising a structure for obtaining a flexible thermoelectric device with a sufficient thickness for obtaining a temperature difference, the structure having a textile structure in which threads configured from thermoelectric material are stitched into a flexible insulating base material having a small thermal conductivity. In an element structure, a plurality of serial structures of π-type thermoelectric conversion cells that utilize a temperature difference in the thickness direction of an insulating base material are arranged in parallel, the element structure having a topology in which, at portions where p-type and n-type are switched, stages that have the same potential during electric power generation are electrically connected, wherein the π-type thermoelectric conversion cells are connected as electric circuits both lengthwise and widthwise in a mesh via serial connection and parallel connection. In this way, a functional element can be provided that is not susceptible to deterioration in output characteristics due to disconnection. Specifically, an n-type spun yarn and a p-type spun yarn comprising an electrically conductive fibrous substance are stitched into a sheet of insulating base material alternately and in parallel, wherein the n-type spun yarn and the p-type spun yarn are electrically connected when respectively alternately penetrating through a front surface and a back surface of the insulating base material.
Outline of related art and contending technology BACKGROUND ART
In recent years, around the body of the non-use is used for recovering the energy, energy harvesting is attracting attention. Among such techniques, the heat recovery and converts it to electric energy conversion technology is expected to be large. The total amount of energy used in the efficiency of exhaust heat 70% is not utilized from that of the invention. However, the area of the conventional thermoelectric conversion element of high bit unit cost is difficult to obtain an economic benefit for the operation of the reasons, to have a limiting use are greeted. Therefore, a large area can be used at a low cost, flexibility in a variety of shapes corresponds to the surface of a large area to reduce the weight and the flexible thermoelectric device is realized, the purpose of use may be widely spread. For example, such as smart sensor network used in a self-distributed power supply and, due to the temperature used for the drive power of the small electric device can be expected.
From such a background organic material or an organic-inorganic composite material is attracting attention as a promising thermoelectric material is started, with the development of the study has been greatly improved and the performance. However, the transistor electrode is originally many organic materials, solar cells can be used as the material has been developed in mind. Therefore, the use of a thin and generally, the thermoelectric device is a necessary and sufficient thickness to obtain a high quality thermoelectric conversion material is not easy.
In general, the performance of the thermoelectric conversion material, the power factor PF (=α2 σ) and the dimensionless performance index ZT (=α2 σ T/ κ) are evaluated. Here, α is the Seebeck coefficient, σ is conductivity, κ is thermal conductivity, T is the absolute temperature is. Power factor PF is, the thermoelectric conversion material obtained from the corresponding power, the dimensionless performance index ZT is, corresponds to the energy conversion efficiency, both the larger value is better the performance as the thermoelectric conversion materials. The conversion efficiency of the thermoelectric conversion element, is only ideally determined by ZT, does not depend on the device structure.
Which is angled in a steady state temperature difference Δ T, all of the heat flow through the thermoelectric material to a low temperature side flow is derived based on the assumption that the index and, in an actual device as well as the material is Δ T is also dependent on the device structure, when the thickness is smaller as the thermal conductivity increases Δ T. In other words, the dimensionless performance index ZT value independent of the structure of the device is, the actual device output and efficiency of the thermoelectric device will be largely dependent on the structure. For example, 37°C temperature, 22°C of the outside air temperature to the interface of a difference between a temperature of 15°C, thermal conductivity and is bonded to the device of 0.1W/mK, the temperature difference is 10°C in order to have a thickness of about 5mm is required. If a small thickness is 200μm, the temperature difference of about 1°C cannot only. In the vicinity of room temperature and the temperature difference is the efficiency of the thermoelectric device, from the substantially linear relationship, the thickness of the thermoelectric device and the relationship between the efficiency of the heat, the temperature difference between the thickness is increased and approaches 15°C, the thermoelectric efficiency is saturated. In order to obtain high thermal efficiencies, the thermoelectric device is necessary to have a sufficient film thickness.
In particular, the heat generated by the Seebeck effect electromotive force and the cold side of the device from the hot side temperature is proportional to the difference, a sufficient temperature differential can be attached to the device becomes important. However, the interface between the atmosphere and the cold side of the device is due to the presence of convective heat resistance, high temperature heat flow from the side of the dammed, a thin film shape in most temperature (several hundred µm) that is the difference in the conditions. In addition, the film thickness of the millimeter order in the thin film material of the film formation difficult. Of the flexible thermoelectric device, the thin film material can be used, and its thickness is 200μm or less, a practical high output is obtained is difficult.
Therefore, the in-plane direction of the thermoelectric device provided with a temperature difference (for example, see Non-Patent Document 1), or, by stacking a thin film of the thermoelectric device a temperature difference to the thickness direction (for example, see Non-Patent Document 2). The former is many, that is, the temperature difference between the in-plane direction with respect to the method of the invention may be used, in this method the flexible thermoelectric device applications such as medical monitoring or considered as a smart building of the distributed power source cannot be used as, limited to the use which is problematic. In addition, the latter, that is, the temperature difference in the thickness direction are attached to the method, it is difficult to control the thickness of the film, and a substrate are required, for many of the heat flow flowing through the substrate, and a decrease in efficiency which is problematic.
On the other hand, the thermoelectric device to form the fabric structure has been known. For example, fire-resistant fabric of the garment used as the dose of the protection, a quantitative measure of the ambient temperature thermocouple capable of containing (see Patent Document 1) is the fabric. This is, a plurality of warp and the intersection of the plurality of weft yarns woven, warp or weft threads between the between the between the, at least one pair of the first thermocouple element line and the second thermocouple element lines are woven into a fabric containing a thermocouple. That is, the thermocouple wire between the woven yarns incorporating the present invention. In addition, so as to be oriented substantially in the weft direction of the wire formed by a plurality of the thermoelectric structure network (see Patent Document 2) is. In addition, the insulating fiber warp, thermocouple 2 is formed of a metal fiber and metal fiber X and Y are alternately woven as the weft, metal fiber and metal fiber wefts as a whole from the X and Y to form a thermopile of the thermoelectric conversion material has been known (see Patent Document 3).
In the case of the thermoelectric device of Patent Document 1, the electrode must be formed, metal lines are used to significantly reduce the efficiency of heat from the is a problem. In addition, in the case of a thermoelectric structure of Patent Document 2, as the thermocouple and contemplates the use, π-type structure does not have a thermoelectric efficiency can be is a problem. Further, the thermoelectric device of Patent Document 1 and Patent Document 2 and Patent Document 3 of the thermoelectric structure of all of the thermoelectric conversion material, providing a temperature difference between the structure and the in-plane direction, in the thickness direction is not provided with a structure.
Scope of claims (In Japanese)[請求項1]
絶縁性基材の厚み方向の温度差を利用するπ型熱電変換セルの直列構造が複数並列に並び、p型とn型が切り換わる部位で、発電時に同電位となる段間が電気的に接続されるトポロジーを有する素子であって、
前記絶縁性基材は、断熱性と柔軟性を有するシート状または帯状で、使用環境において基材単体で形状保持し得る基材強度を有し、
前記素子は、断熱性を有する導電性繊維状物質から成るn型紡績糸とp型紡績糸が、前記絶縁性基材に交互かつ並行して縫い込まれ、それぞれ前記絶縁性基材の表面と裏面を交互に貫通する際に互いに電気的に接続されており、
前記絶縁性基材と前記紡績糸が互いに緩やかに結合し、π型熱電変換セルが電気回路として直列接続と並列接続の両方で網目状に縦横に接続され、断線に対する素子の耐性を高めたことを特徴とする機能性素子。
[請求項2]
前記導電性繊維状物質の長手方向の熱伝導率が、10W/mK未満に抑制されていることを特徴とする請求項1に記載の機能性素子。
[請求項3]
前記n型紡績糸と前記p型紡績糸が、それぞれ前記絶縁性基材の表面と裏面を交互に貫通する際に糸を少なくとも1回交差させられ、交差部で電気的に接触していることを特徴とする請求項1又は2に記載の機能性素子。
[請求項4]
前記n型紡績糸と前記p型紡績糸が、それぞれ前記絶縁性基材の表面と裏面を交互に貫通する際に糸を交差あるいは接触させられ、交点あるいは接点に導電性ペーストによる電気的接続の補強が設けられたことを特徴とする請求項1~3の何れかに記載の機能性素子。
[請求項5]
前記n型紡績糸と前記p型紡績糸が、それぞれ前記絶縁性基材の表面と裏面を交互に貫通する際に糸を交差あるいは接触させられ、交点あるいは接点が接着されたことを特徴とする請求項1~4の何れかに記載の機能性素子。
[請求項6]
前記n型紡績糸と前記p型紡績糸が、前記絶縁性基材の厚み方向に対して斜めに貫通し、前記絶縁性基材の表面と裏面にそれぞれ露出される部分を増減させたことを特徴とする請求項1~5の何れかに記載の機能性素子。
[請求項7]
前記n型紡績糸と前記p型紡績糸が帯状、又は、前記n型紡績糸と前記p型紡績糸の断面が多角形もしくは楕円形であることを特徴とする請求項1~6の何れかに記載の機能性素子。
[請求項8]
前記絶縁性基材は、柔軟性および伸縮性あるいはその一方を有することを特徴とする請求項1~7の何れかに記載の機能性素子。
[請求項9]
前記絶縁性基材は、布又は紙、あるいは、発泡ポリマー、エラストマー、綿状凝集体及びゲル状凝集体から選択される素材を板状あるいはシート状に加工したものの何れかであることを特徴とする請求項8に記載の機能性素子。
[請求項10]
前記絶縁性基材は、縫製されたものであり、縫製される際に、前記n型紡績糸と前記p型紡績糸が、同時に縫製されたことを特徴とする請求項1~9の何れかに記載の機能性素子。
[請求項11]
前記絶縁性基材は、π型熱電変換セルの厚みと実質的同一の径を有する縦糸と横糸を用いて縫製されたことを特徴とする請求項10に記載の機能性素子。
[請求項12]
前記紡績糸は、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)、グラフェン、グラフェンナノリボン、フラーレンナノウィスカー及び無機半導体ウィスカーの群から選択される1種以上の導電性ナノファイバーと、
ポリマー、デンドリマー、ポリペプチド及びタンパク質の群から選択される1種以上を主成分とする絶縁性材料又は導電性材料との複合材料から成ることを特徴とする請求項1~11の何れかに記載の機能性素子。
[請求項13]
前記紡績糸は、0.1~100μmの径のCNTから成る繊維を複数撚り合せた撚糸であることを特徴とする請求項12に記載の機能性素子。
[請求項14]
請求項1~13の機能性素子の製造方法であって、
前記n型紡績糸と前記p型紡績糸の一方を第1紡績糸、他方を第2紡績糸とし、前記絶縁基材の表面と裏面の一方を第1面、他方を第2面として、
第1紡績糸が前記絶縁性基材に直線状に波縫いされている状態で、
波縫いされた第1紡績糸に並行に隣接して第2紡績糸を波縫いする際に、第1面で一工程前に縫った第1紡績糸の第1面に露出している部分を交差させ、少なくとも1回捻じった後に縫うステップ、
次に、波縫いされた第2紡績糸に並行に隣接して第1紡績糸を波縫いする際に、第2面で一工程前に縫った第2紡績糸の第2面に露出している部分を交差させ、少なくとも1回捻じった後に縫うステップ、
上記のステップを繰り返すことにより、波縫いの方向と直交する方向に電流経路が形成され、該電流経路に沿ってπ型構造直列接合が形成されることを特徴とする機能性素子の作製方法。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • NATIONAL UNIVERSITY CORPORATION NARA INSTITUTE OF SCIENCE AND TECHNOLOGY
  • Inventor
  • NAKAMURA, Masakazu
  • ITO, Mitsuhiro
  • KOIZUMI, Takuya
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close