Top > Search of International Patents > SURFACE-MODIFIED NANOFIBERS, ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL

SURFACE-MODIFIED NANOFIBERS, ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL meetings

Foreign code F180009398
File No. (S2016-1066-N0)
Posted date Apr 20, 2018
Country WIPO
International application number 2017JP029772
International publication number WO 2018038049
Date of international filing Aug 21, 2017
Date of international publication Mar 1, 2018
Priority data
  • P2016-162455 (Aug 23, 2016) JP
Title SURFACE-MODIFIED NANOFIBERS, ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING ELECTROLYTE MEMBRANE, MEMBRANE ELECTRODE ASSEMBLY AND SOLID POLYMER FUEL CELL meetings
Abstract [Problem] To develop novel nanofibers that constitute a composite electrolyte membrane and provide an electrolyte membrane which has sufficient ion conductivity (proton conductivity) and gas barrier properties even if formed into a thin membrane of 30 μm or less.
[Solution] Surface-modified nanofibers which are obtained by modifying the surfaces of polymer nanofibers with an acidic substance and a basic substance, and which are characterized in that the acidic substance has proton conductivity and the basic substance increases the modification amount of the acidic substance; an electrolyte membrane which contains these nanofibers; and a method for producing a composite membrane, which comprises a step for forming a nonwoven fabric formed of polymer nanofibers, a step for subjecting the nonwoven fabric to a surface modification treatment, a step for integrating the surface-modified nanofibers and a matrix polymer by filling the pores of the nonwoven fabric with the matrix polymer, and a step for subjecting an electrolyte membrane containing the surface-modified nanofibers to a post-treatment.
Outline of related art and contending technology BACKGROUND ART
Various non-woven fabric is a composite film material can be introduced in various fields and applications, in recent years as an electrolyte membrane in polymer electrolyte fuel cell has attracted attention. The solid polymer fuel cell in the polymer electrolyte membrane as an electrolyte membrane has been proposed, Nafion (registered trademark) as an example of the fluorine-containing electrolyte is represented. However, these fluorine-based electrolyte membrane, the proton conductivity is lowered under a low humidification condition is for the power generation performance is poor, the transmission of the fuel gas by a side reaction caused by inducing the deterioration of the catalyst and membrane, the dimensional change caused by the poor film strength is inferior in long-term stability, the fluorine high cost for use, a problem that.
On the other hand, a fluorine material that does not use a hydrocarbon-based polymer electrolyte membrane has been studied for development. Hydrocarbon-based polymer electrolyte membrane, in order to increase the ion conductivity to increase the number of sulfonic acid groups has been proposed is, in this proposal, for the water-swellable film prone to be deformed, in addition, mechanical strength becomes weak, a film exhibiting excellent long-term stability in a problem that it is difficult to obtain.
Therefore, is variously developed and, in particular sulfonated polyimide, has high thermal stability and mechanical strength, excellent film-forming property, a high-performance as an electrolyte material has been proposed (JP-1-4). However, these proposed sulfonated polyimide, high temperature low humidity ion conductivity because it is a problem, a high ionic conductivity over a wide temperature range, excellent mechanical strength as a polymer electrolyte membrane, phosphoric acid-doped polybenzimidazole blend/sulfonated polyimide film (Patent Document 5) has been proposed. Such a film may be, a high temperature of approximately 120°C from a low temperature of about -20°C to the high ionic conductivity over a wide temperature range, the moisture in the film is small even under a low humidification of the ion conductivity is excellent. However, in recent years, the polymer electrolyte membrane, high ionic conductivity in unhumidified conditions is obtained, from the aim of decreasing the film resistance, the film thickness tends to be lowered. The blend film, having the main chain can be a rigid structure, but high mechanical strength, brittle and a thin film become difficult to handle the problem. In addition, the film thickness becomes thinner by increasing the permeability of gas, in order to generate a large amount of hydrogen peroxide, the oxidation stability is poor, a long-term stable film is not.
Therefore, in Patent Document 6, high ion conductivity in a wide temperature and humidity in the range, the handleability is excellent also in the thin film, composite film excellent in long-term stability, and a manufacturing method thereof are proposed.
Scope of claims (In Japanese)[請求項1]
ポリマーナノファイバーの表面に分子修飾部位を有する表面修飾ナノファイバーであって、
該分子修飾部位はプロトン伝導性を有する
ことを特徴とする表面修飾ナノファイバー。
[請求項2]
前記分子修飾部位は、下記A)、B)、C)を有することを特徴とする請求項1に記載の表面修飾ナノファイバー。
A)ポリマーナノファイバーと相互作用可能な官能基を有する。
B)酸性物質および塩基性物質から構成される。
C)前記酸性物質および塩基性物質は、交互積層構造からなる。
[請求項3]
前記酸性物質は、プロトン伝導性を示す酸性官能基を複数有する低分子あるいは高分子群より選択される構造を有し、
前記塩基性物質は、塩基性官能基を複数有する低分子あるいは高分子群より選択される構造を有する
ことを特徴とする請求項2に記載の表面修飾ナノファイバー。
[請求項4]
前記のプロトン伝導性を示す酸性官能基が、スルホン酸基、ホスホン酸基又はカルボン酸基であり、
前記塩基性官能基は、三級窒素、四級窒素、四級リン又は四級硫黄を有する基である
ことを特徴とする請求項3に記載の表面修飾ナノファイバー。
[請求項5]
前記三級窒素を有する基は、アミン誘導体、ピリジン誘導体、イミダゾール誘導体であり、前記四級窒素を有する基は、アンモニウム基、ピリジニウム基、イミダゾリウム基であり、前記四級リンを有する基は、ホスホニウム基であり、前記四級硫黄を有する基はスルホニウム基である
ことを特徴とする請求項4に記載の表面修飾ナノファイバー。
[請求項6]
前記表面の分子修飾部位の存在割合が、表面修飾ナノファイバー全体中5~90質量%であり、
前記表面修飾ナノファイバーの繊維径が1000nm以下であること、
を特徴とする請求項1~5のいずれかに記載の表面修飾ナノファイバー。
[請求項7]
前記ポリマーナノファイバーは、下記PA)、PB)、PC)の構造を有することを特徴とする請求項1に記載の表面修飾ナノファイバー。
PA)主鎖に、芳香族基あるいは/および脂肪族基を含む繰り返し単位を含む。
PB)前記主鎖骨格、あるいは側鎖官能基に、酸性物質あるいは塩基性物質と相互作用可能な塩基性あるいは酸性官能基を複数有する。
PC) 電界紡糸法により形成される繊維であり、その繊維径が300nm以下である。
[請求項8]
請求項1~7のいずれかに記載の表面修飾ナノファイバーを含む電解質膜であって、
前記表面修飾ナノファイバーの存在割合が、電解質膜全体中10~90質量%であり、
厚さが30μm以下であること、
を特徴とする表面修飾ナノファイバーを含む電解質膜。
[請求項9]
ポリマーナノファイバーからなる不織布を形成する工程、
前記不織布に表面修飾処理を施す工程、
前記不織布の空隙にマトリクスポリマーを充填して、表面修飾ナノファイバーとマトリクスポリマーとを一体化させてマトリクスポリマー充填不織布を得る工程、及び
得られたマトリクスポリマー充填不織布を後処理する工程
を具備する電解質膜の製造方法。
[請求項10]
請求項8に記載の電解質膜を含むことを特徴とする、固体高分子形燃料電池用の膜電極接合体。
[請求項11]
請求項10に記載の膜電極接合体を含むことを特徴とする、固体高分子形燃料電池。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • TOKYO METROPOLITAN UNIVERSITY
  • Inventor
  • KAWAKAMI Hiroyoshi
  • TANAKA Manabu
  • MAKINOUCHI Takahito
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG

PAGE TOP

close
close
close
close
close
close