Top > Search of International Patents > PRODUCTION METHOD AND PRODUCTION DEVICE FOR NITROGEN COMPOUND

PRODUCTION METHOD AND PRODUCTION DEVICE FOR NITROGEN COMPOUND commons meetings

Foreign code F180009473
File No. 2016002314
Posted date Sep 14, 2018
Country WIPO
International application number 2016JP082629
International publication number WO 2017078082
Date of international filing Nov 2, 2016
Date of international publication May 11, 2017
Priority data
  • P2015-216552 (Nov 4, 2015) JP
Title PRODUCTION METHOD AND PRODUCTION DEVICE FOR NITROGEN COMPOUND commons meetings
Abstract The present invention provides a method and a device which produce a nitrogen compound membrane by plasma without applying a voltage to a substrate and without the need of a large container, suitable for an increase in area, and employing a high-pressure process which uses little power. In the production of a nitrogen compound where microwave plasma is generated to produce the nitrogen compound, by applying the microwaves to a feedstock gas containing a nitrogen-based gas which is discharged from a nozzle to the surface of a substrate at a controlled rate, the plasma containing a nitrogen-based active species generated from the feedstock gas is emitted to the surface of the substrate. In this step, the pressure is set higher than a pressure at which the mean free path of ions of the plasma is smaller than the Debye length.
Outline of related art and contending technology BACKGROUND ART
Conventional, nitrogen compounds as a method for producing a thin film, and the surface of the substrate to nitriding treatment in a, nitrogen compound formed on the surface of the substrate by the thin film fabrication techniques and the like are known.
Nitride processing method, more specifically the surface modification treatment, such as titanium nitride the surface of the steel and the surface modifying agent are widely used as a method. The nitration surface treatment products, machine parts and tools such as a spindle or a gear, turbine or internal combustion engine such as fuel injection nozzle parts, a gear and a reducer such as a power shovel, such as an aircraft or automobile parts are used. In addition, in recent years, medical parts on a nitriding treatment or the like, in various fields has been developed. Processing method is a nitride, to increase the hardness, corrosion resistance is applied, the surface of the abrasion resistance in the case of giving the function applies the, nitrogen-based high density can be utilized as the active species supply method.
Nitride processing method, the high density nitrogen-based active species supply techniques are, Metal Organic Chemical Vapor Deposition (hereinafter, referred to as MOCVD.) At the surface of a substrate such as can be applicable to the production of material.
In semiconductor technique, blue GaN-based compound semiconductor material, the green light emitting diode (LED), incandescent light bulb or an existing lighting device such as a fluorescent lamp which takes the place of energy saving, long life illumination, which have become increasingly common as the light source for display. LED illumination, white blue LED exciting a yellow phosphor in photosynthesis system is mostly used. In this case a single LED is about 270lm/W the theoretical limit of the light emission efficiency. In order to improve further the emission energy efficiency (theoretical efficiency>400lm/W), multi-color LED free white LED emit light at the phosphor needs to be developed. There is, on the order of 30% composition In InGaN LED green luminescent material is used as an improvement of the external quantum efficiency. The current, the luminous efficiency of the green LED, a high performance product of about 20% and the blue and red LED than the emission efficiency, or less than one half. The reason for this is, the element constituting a high vapor pressure of a low temperature of about 600°C In desirable growth on the other hand, nitrogeN is, 800°C or more preferably 1000°C or more at a high temperature decomposing ammonia state nitrogen is necessary, it is difficult to obtain optimal crystal growth conditions. Therefore, 800°C or less nitrogen-based active species can be supplied at a high technique is demanded.
Nitriding method as, for example, substantially only gas nitriding furnace is supplied to the ammonia gas, ammonia gas and ammonia decomposition gas member in a technique of forming a nitride layer on the surface (see Patent Document 1) are known.
In addition, a metal nitride on the surface of the metallic compound layer and can be efficiently formed, compound layer and nitrogen and that of a synergistic effect of the diffusion layer and the hardness can be increased, the ion nitriding by glow discharge method (see Patent Document 2) are known. In patent document 2, the metal member -700V, 0.95A (665W) hydrogen as the working gas ion nitriding at 2slm, using 0.5slm ammonia, 1Torr 1 atmosphere pressure in the ion nitriding processing time is performed. At this time, the temperature of the metal member at a temperature of 300-650 ° C., the surface of the metallic 0.001-2 mA/cm^2 glow discharge which in current density, of the emission intensity ratio NH 0.2-0.1 radical and nitrogen in the plasma state and the ion nitriding is performed.
An alloy of titanium by the atmospheric pressure plasma thin film synthesis techniques are, in comparison with the conventional nitriding method known as a simple nitriding method (see non-patent document 1). By the use of atmospheric plasma, simplification of the processing apparatus, high-density radical generation, it is possible to limit the metal surface is roughened. In non-patent document 1, (5kv, 1.2A, 21kHz) high-frequency power source 4 effective power in kilowatts, nitrogen as the working gas 99%, hydrogen gas 1% is used.
Recently, in the intermediate-pressure and high pressure from a low, stabilize the plasma generated, the microwave plasma processing apparatus can be maintained has been developed (non-patent document 2, see Patent Document 3). Typically, the characteristics of the processing of plasma such as plasma CVD, because it strongly depends on the pressure produced plasma, plasma with respect to the pressure of the following three types classified into two types. (1) A low-pressure plasma: 0.01Torr-1.0Torr pressure region, (2) the intermediate-pressure plasma: pressure region 1.0Torr-100Torr, (3) high-pressure: pressure region 100Torr-760Torr (atmospheric pressure). It should be noted that, hereinafter, in units of pressure Pa (1Torr=133 Pa).
The inventors of the present invention, instead of the microstrip line waveguide microwave transmission line is used as the microwave plasma processing apparatus has already proposed (non-patent document 2, see Patent Document 3). The apparatus comprises, a conventional waveguide using the microwave plasma processing apparatus, simple structure, low cost fabrication, has advantages such as low power operation, from which a variety of industrial applications is expected.
Scope of claims (In Japanese)請求の範囲
[請求項1]
 マイクロ波プラズマを生成して窒素化合物を製造する窒素化合物の製造方法であって、
 ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、圧力を前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高く設定することを特徴とする窒素化合物の製造方法。
[請求項2]
 前記マイクロ波を印加するために、マイクロ波伝送線路としてマイクロストリップ線路又はストリップ線路を用いることを特徴とする請求項1に記載の窒素化合物の製造方法。
[請求項3]
 前記ノズルをライン状に配置することにより、前記プラズマを前記基材に向かってライン状に照射して、前記基材表面に窒素化合物をライン状に形成することを特徴とする請求項1又は2に記載の窒素化合物の製造方法。
[請求項4]
 前記ノズルから前記原料ガスを吹き出す際に、吹き出し角度を前記基材に垂直な面に対してプラス及びマイナス45度の角度の範囲内で吹き出すことを特徴とする請求項1乃至3のいずれか1項に記載の窒素化合物の製造方法。
[請求項5]
 前記工程が行われる圧力を1kPa以上に設定することを特徴とする請求項1乃至4のいずれか1項に記載の窒素化合物の製造方法。
[請求項6]
 前記マイクロ波の投入エネルギーが500ワット以下であることを特徴とする請求項1乃至5のいずれか1項に記載の窒素化合物の製造方法。
[請求項7]
 前記ノズルを2個以上重ねて並べて、各ノズルから窒素系ガスを含む原料ガスを前記基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから窒素系活性種を含むプラズマを生成して、前記プラズマを前記基材の表面に向かって照射する工程を含むことを特徴とする請求項1乃至6のいずれか1項に記載の窒素化合物の製造方法。
[請求項8]
 前記基材がTiであり、前記窒素化合物がTiNであることを特徴とする請求項1乃至7のいずれか1項に記載の窒素化合物の製造方法。
[請求項9]
 Ga、In、あるいはAlを有機金属蒸気として輸送し、前記原料ガスから生成される窒素系活性種を含むプラズマと、気相あるいは基板上で反応させることにより、GaN、InGaN、InN、あるいはAlN、及びこれらの混合組成のいずれかからなる窒素化合物の薄膜結晶を、700℃以下の低温にて前記基材上にエピタキシャル成長させることを特徴とする請求項1乃至7のいずれか1項に記載の窒素化合物の製造方法。
[請求項10]
 窒素系活性種計測部及び制御部を設け、窒素系活性種の量の計測に基づき制御することを特徴とする請求項1乃至9のいずれか1項に記載の窒素化合物の製造方法。
[請求項11]
 マイクロ波プラズマを生成して窒素化合物を製造する装置であって、容器と、容器内に設けられ、ノズルを有するマイクロ波プラズマ生成装置と、窒素系活性種計測部と、制御部とを備え、
 前記制御部は、前記ノズルから窒素系ガスを含む原料ガスを基材の表面に流量を制御して吹き出しながら、前記原料ガスにマイクロ波を印加することにより、前記原料ガスから生成される窒素系活性種を含むプラズマを前記基材の表面に向かって照射する工程において、容器内の圧力が、前記プラズマにおけるイオンの平均自由行程がデバイ長より小さくなる圧力より高くなるように、前記窒素系活性種の量の計測に基づき制御することを特徴とする製造装置。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
  • Inventor
  • ITAGAKI Hirotomo
  • SAKAKITA Hajime
  • KIM Jaeho
  • OGURA Mutsuo
  • WANG Xuelun
  • HIROSE Shingo
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JP KE KG KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
Reference ( R and D project ) Innovative Plasma Processing Group, AIST

PAGE TOP

close
close
close
close
close
close