Top > Search of International Patents > POLYCRYSTALLINE MAGNESIUM SILICIDE AND USE THEREOF

POLYCRYSTALLINE MAGNESIUM SILICIDE AND USE THEREOF

Foreign code F180009492
File No. S2018-0235-N0
Posted date Nov 1, 2018
Country WIPO
International application number 2017JP024671
International publication number WO 2018012369
Date of international filing Jul 5, 2017
Date of international publication Jan 18, 2018
Priority data
  • P2016-137976 (Jul 12, 2016) JP
Title POLYCRYSTALLINE MAGNESIUM SILICIDE AND USE THEREOF
Abstract Provided are polycrystalline magnesium silicide containing only carbon as a dopant and having carbon distributed at the crystal grain boundaries and within the crystal grains, a thermoelectric conversion material obtained using the polycrystalline magnesium silicide, a sintered compact, a thermoelectric conversion element, and a thermoelectric conversion module, and methods for producing polycrystalline magnesium silicide and a sintered compact.
Outline of related art and contending technology BACKGROUND ART
In recent years, in accordance with the increase in environmental problems, various types of efficient utilization of energy has been studied a variety of means. In particular, with the increase in industrial waste, the waste heat generated at the time of these substances has been a problem can be effectively utilized. For example in a large waste incineration facility, waste heat generated by high pressure steam, this steam of the steam turbine is rotated by the power generation of the waste heat recovery is being performed. However, a waste incineration facility accounts for the majority of waste incineration facilities of medium or small, a small amount of discharge of the waste heat, waste heat recovery steam turbine power generation or the like can be employed is not a method.
In such a medium or small waste incineration facility can be used in power generation using waste heat such as a method, for example, using the Seebeck effect or Peltier effect is a reversible thermoelectric conversion material performs thermoelectric conversion, the thermoelectric conversion element or a method using a thermoelectric conversion module has been proposed. Thermoelectric conversion element, the thermoelectric conversion material and the thermoelectric conversion portion configured from the electrode portion, the thermoelectric conversion module, thermoelectric conversion element attached to a plurality of the present invention.
In the prior art, a number of thermoelectric conversion material is proposed, in which a high temperature whereby magnesium silicide thermoelectric conversion element area in addition to the better the performance, both the raw materials of magnesium and silicon is present in abundance as a resource is not toxic and has attracted attention from (for example, see Patent Document 1).
For example, Sn, Ge and at least one kind of element selected from Al and 1, Ag, As, cu, Sb, P, B is selected from at least one kind of element 1 as a dopant is known powder whereby magnesium silicide (for example, see Patent Document 2).
In addition, Sb, P, As, Bi, at least one selected from Al 1 doped with the dopant A mg2 Si1-x Snx in, transition metal B of the elements and/or transition metal silicide with the dispersion of B mg2 Si1-x Snx, Aa,Bbpolycrystalline body has been known (for example, see Patent Document 3).
Scope of claims (In Japanese)請求の範囲
[請求項1]
 ドーパントとしてカーボンのみを含み、カーボンが結晶粒内および結晶粒界に分布している多結晶性マグネシウムシリサイド。
[請求項2]
 カーボンを0.05at%~3.0at%含む請求項1に記載の多結晶性マグネシウムシリサイド。
[請求項3]
 請求項1または請求項2に記載の多結晶性マグネシウムシリサイドから構成される熱電変換材料。
[請求項4]
 請求項1または請求項2に記載の多結晶性マグネシウムシリサイドを焼結してなる焼結体。
[請求項5]
 523Kにおける出力因子が3.0×10 -3Wm -1K -2以上で、かつ523Kにおける性能指数(Z)が0.78×10 -3K -1以上である請求項4に記載の焼結体。
[請求項6]
 523Kにおける無次元性能指数(ZT)が0.40以上で、かつ873Kにおける無次元性能指数(ZT)が0.86以上である請求項4または請求項5に記載の焼結体。
[請求項7]
 請求項4~請求項6のいずれか1項に記載の焼結体から構成された熱電変換部と、前記熱電変換部に設けられた第1電極および第2電極とを備える熱電変換素子。
[請求項8]
 請求項7に記載の熱電変換素子を備える熱電変換モジュール。
[請求項9]
 請求項1または請求項2に記載の多結晶性マグネシウムシリサイドを製造する多結晶性マグネシウムシリサイドの製造方法であって、
 マグネシウム、シリコンおよびカーボン源を混合してなる組成原料を加熱溶融して加熱溶融合成物を作製する工程を含む多結晶性マグネシウムシリサイドの製造方法。
[請求項10]
 前記カーボン源が、sp 2混成軌道を持つ炭素およびsp 3混成軌道を持つ炭素で形成されるカーボン同素体である請求項9に記載の多結晶性マグネシウムシリサイドの製造方法。
[請求項11]
 前記カーボン源が、フラーレンである請求項9または請求項10に記載の多結晶性マグネシウムシリサイドの製造方法。
[請求項12]
 前記加熱溶融合成物を粉砕して粉砕物を作製する工程をさらに含む請求項9~請求項11のいずれか1項に記載の多結晶性マグネシウムシリサイドの製造方法。
[請求項13]
 請求項12に記載の製造方法により得られる粉砕物を焼結する工程を含む焼結体の製造方法。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • TOKYO UNIVERSITY OF SCIENCE FOUNDATION
  • Inventor
  • IIDA Tsutomu
  • KONDO Syunsuke
  • NAKATANI Mitsunobu
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close