Top > Search of International Patents > COMPOUND SEMICONDUCTOR AND METHOD FOR PRODUCING SAME

COMPOUND SEMICONDUCTOR AND METHOD FOR PRODUCING SAME

Foreign code F190009711
File No. AE06-02WO
Posted date Jan 24, 2019
Country WIPO
International application number 2018JP021122
International publication number WO 2018221711
Date of international filing Jun 1, 2018
Date of international publication Dec 6, 2018
Priority data
  • 2017JP20513 (Jun 1, 2017) WO
  • P2018-041338 (Mar 7, 2018) JP
Title COMPOUND SEMICONDUCTOR AND METHOD FOR PRODUCING SAME
Abstract The present invention provides a low-resistance nitride compound semiconductor which has been difficult to manufacturing in the past. Furthermore, high electron mobility is shown, and therefore it is possible to configure a high-performance semiconductor device. According to the present invention, using a pulse sputtering method under a processing atmosphere of room temperature to 700°C makes it possible to perform film formation on a large-area substrate, and to provide with excellent productivity an n-type electrically conductive group-13 nitride semiconductor having a mobility of 70-140 cm2/(V•S).
Outline of related art and contending technology BACKGROUND ART
Such as GaN or InN device 13 using the group III nitride semiconductor have been widely used.Conventionally, such the crystal growth of the group III nitride semiconductor 13, MOCVD method or MBE method is used.However, the temperature of the MOCVD method is more than 1000°C is required in processes.Of the compound semiconductor at a low temperature MBE method can be formed, the film forming area can be a limit on the high and the production cost is not directed to mass production.
In addition, in the MBE method, a high concentration of donor is added, the crystal structure generated in a forbidden band in the vicinity of the conduction band of the high-concentration donor level due to the absorption is generated.Therefore, the compound semiconductor film decreases the transparency of the problem.For this reason, the production of a compound semiconductor, a nitride semiconductor is mainly a practical production, the MOCVD method is used (Non-Patent Document 1).
Current, high breakdown voltage with low on-resistance of the next generation having the characteristics of the electronic device is demanded.For this purpose, a ternary 2, ternary 3 or ternary compound semiconductor 4, more specifically, the group III nitride compound semiconductor 13 for realizing a semiconductor device is demanded.For this purpose, the compound semiconductor crystal of high quality and further, a doping technique of the refinement is obtained.In particular, GaN is formed on the substrate in the vertical type power device, the carbon concentration of the n-type drift layer and the reduction, there is an urgent need to improve the electron mobility.The following prior art documents can be increased.
Is Patent Document 1, copper metal nitride buffer layer on the substrate, the semiconductor layer is provided with a semiconductor element is disclosed.
Patent Document 2 is, in a thickness of 10-100μm, sintered polymer, heat-resistant flexible graphite substrate provided on the buffer layer and the HfN, GaN buffer layer provided on the semiconductor substrate and a semiconductor layer of the disclosed embodiments.In addition, in Patent Document 3, III-V substrate ZnO group III-V compound semiconductor is epitaxially grown by a method of manufacturing.
Patent Document 4 and Patent Document 5 relates to a nitride semiconductor 0167 will be described in the following paragraphs herein.Then, the Patent Document 6, PCT patent application will be described later (PCT/JP2017/020513 by the present applicant) of the international search report in the prior art cited.Si concentration may be increased to 2x10E+20/cm3, the roughness of the AlGaN film does not occur in the experimental result is disclosed (Fig. 4).
Then, the non-patent document 1 is described above, n-type GaN is formed using MOCVD of the semiconductor layer disclosed in the research on physical properties.P-type GaN is non-patent document 2 and the contact resistance of the semiconductor layer disclosed in the research on.Is the non-patent document 3, the InGaN-based LED element in the p-type GaN grown at low temperature is produced in the PSD method disclosed in the research.Is the non-patent document 4, the electron mobility in silicon and the doping concentration of the research is disclosed.
Is the non-patent document 5, the carrier mobility in the GaN of the model of the research are disclosed.Is in Non-Patent Document 6, p-type GaN is formed on the PSD method for the evaluation of the research relating to the contact resistance has been disclosed.Is the non-patent document 7, the LED is formed on the glass in the experiment example has been disclosed.Is the non-patent document 8, using the PSD method for the growth of a nitride single crystal has been disclosed in the research.Is the non-patent document 9, a very low on-resistance of the Ge-doped GaN normally-off type transistor is disclosed.
Is the non-patent document 10, Si-doped AlGaN with a low resistance of the high carrier concentration has been disclosed in the research.Is the non-patent document 11, the concentration of Si 1034cm2/2x 1016cm-3 mobility (V, S) is disclosed in an experimental example.Is the non-patent document 12, the Ge-doped GaN of the PSD method for the epitaxial growth film has been disclosed.Is the non-patent document 13, Ge and Si-doped n-type GaN to provide new physical properties has been disclosed in detail.Finally, the non-patent document 14, high-quality nitride semiconductor by a sputtering method and the formation of the research relating to the application to a device have been reported.
Scope of claims (In Japanese)請求の範囲 [請求項1]
 窒素と13族元素であるB、Al、GaまたはInからなる群より選ばれる一つの元素を含有する2元系、3元系または4元系の化合物半導体であって、
 電子濃度と比抵抗の二つの物性値の組み合わせについて、
(a)電子濃度が1.8×10 20cm -3、且つ、比抵抗が0.25×10 -3Ω・cm、
(b)電子濃度が3.6×10 20cm -3、且つ、比抵抗が0.25×10 -3Ω・cm、
(c)電子濃度が6×10 20cm -3、且つ、比抵抗が0.15×10 -3Ω・cm、
及び、
(d)電子濃度が3×10 20cm -3、且つ、比抵抗が0.15×10 -3Ω・cm、
の4点で囲まれた数値条件を満たす化合物半導体。

[請求項2]
 比抵抗が0.190×10 -3Ω・cm以下である請求項1に記載の化合物半導体。

[請求項3]
 Siを含有する請求項1に記載の化合物半導体。

[請求項4]
 AFMによる表面粗さ測定で得られるRMS値が1.5nm以下である請求項1、2または3に記載の化合物半導体。

[請求項5]
 n型導電性であり、電子移動度が80cm 2/(V・S)以上である請求項1、2、3または4に記載の化合物半導体。

[請求項6]
 電子移動度がn型導電性であり、電子移動度が130cm 2/(V・S)以下である請求項1~5のいずれか1項に記載の化合物半導体。

[請求項7]
 GaとNを主成分とする請求項1~6のいずれか1項に記載の化合物半導体。

[請求項8]
 前記13族元素としてGaを含み、さらにAl及び/またはInを含有する請求項1~7のいずれか1項に記載の化合物半導体。

[請求項9]
 Geを含有する請求項1~8のいずれか1項に記載の化合物半導体。

[請求項10]
 請求項1~9のいずれか1項に記載の化合物半導体が用いられた導電部と電極とが接続されてなるコンタクト構造。

[請求項11]
 請求項10に記載のコンタクト構造が備えられた半導体素子。

[請求項12]
 請求項1~9のいずれか1項に記載の化合物半導体が用いられた透明電極。

[請求項13]
 窒素と13族元素であるB、Al、GaまたはInからなる群より選ばれる一つの元素を含有する2元系、3元系または4元系の化合物半導体の製造方法であって、
 希ガス、窒素ガス、及び酸素を含むプロセス雰囲気で、少なくともGaを含むターゲット金属をチャンバ内でパルススパッタリングし、
 成長レートを450nm/h以下とし、0.4×10 -3Ω・cm以下の比抵抗を有する化合物半導体を成膜する化合物半導体の製造方法。

[請求項14]
 請求項13の化合物半導体の製造方法において、成膜時の基板温度を700℃以下で行う化合物半導体の製造方法。

[請求項15]
 請求項13または14の化合物半導体の製造方法において、成長レートを90~450nm/hに設定する化合物半導体の製造方法。

[請求項16]
 請求項13、14または15に記載の化合物半導体の製造方法において、プロセス雰囲気に酸素ガスを供給する化合物半導体の製造方法。

[請求項17]
 請求項13~16のいずれか1項に記載の化合物半導体の製造方法において、酸素ガスをチャンバ内に供給することなく、チャンバ内の残留成分に含まれる酸素成分、または、他の原料ガス若しくはターゲット金属に含まれる微量な酸素成分を用いてスパッタリングを行う化合物半導体の製造方法。

[請求項18]
 請求項13~17のいずれか1項に記載の化合物半導体の製造方法において、化合物半導体を成膜する面とターゲット金属との距離を10~50cmに設定する化合物半導体の製造方法。

[請求項19]
 請求項13~18のいずれか1項に記載の化合物半導体の製造方法に用いられるスパッタガンであって、
ターゲット金属がスパッタガンのヘッド部に備えられ、ヘッド部が基板電極に対向するようにチャンバに組み込まれ、
ヘッド部の有効サイズが約1インチサイズ~4インチサイズであるスパッタガン。

[請求項20]
 請求項19に記載のスパッタガンにおいて、平面形状が円形または矩形であるターゲット金属をヘッド部に搭載するように構成されてなるスパッタガン。

  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • JAPAN SCIENCE AND TECHNOLOGY AGENCY
  • Inventor
  • FUJIOKA Hiroshi
  • UENO Kohei
IPC(International Patent Classification)
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close