Top > Search of International Patents > SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE

SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE

Foreign code F190009785
File No. (S2017-0956-N0)
Posted date May 7, 2019
Country WIPO
International application number 2018JP031302
International publication number WO 2019039581
Date of international filing Aug 24, 2018
Date of international publication Feb 28, 2019
Priority data
  • P2017-162635 (Aug 25, 2017) JP
Title SAMPLE OBSERVATION METHOD, SAMPLE OBSERVATION DEVICE, AND MICROSCOPE
Abstract [Problem] The purpose of the present invention is to provide a transmission-type sample observation method and a transmission-type microscope that enable spatial spectrum analysis and clarification of an image of a sample even when the microscope has an adjustable-focal-point optical system.
[Solution] In a sample observation method and sample observation device according to the present invention: observations are made in certain camera-side pixels; a large-region component (B) and a large-region component (C) that are present when an observation point is positioned in a dark-illumination part are removed from a direct component (A), the large-region component (B), and the large-region component (C) that are present when the observation point is positioned in a bright-illumination part, the direct component (A) being formed from observation-point light that is single-scattered from the observation point when focus has been achieved, the large-region component (B) being formed from light that is single-scattered from a non-focused point, and the large-region component (C) being formed from multiple-scattered light; and the direct component (A) is thereby extracted by using the difference between a focused state that can be used as pattern illumination of the bright- and dark-illumination parts and a non-focused state in which the pattern illumination is uniform.
Outline of related art and contending technology BACKGROUND ART
A transmission type optical microscope, biomedical, food safety, and many other applications are widely used. When a sample is observed with a microscope, the optical image sensor before reaching the small particles in the sample to change the direction of the strikes. As a result, the image sensor, the sum of the scattered light passing through the different paths will be captured. The scattering of light is, the image observed by the indistinct. (B) is shown in Fig. 1, the micro-meter (Fig. 1 (a) ) was placed on top of the scattering transmission electron microscope observation of the image. In this way the scattering of light is to blur the image.
The obscuration of the image due to scattering, it is a big problem in biomedical image is formed. For example, in the spatio-spectral analysis of biological tissue, the absorption coefficient is at a particular point must be accurately measured. However, the signal is measured, and the specific point of the light scattered from different points may include, different points within the tissue and scattered light to the information. At a particular point of the biological tissue is measured accurately, a particular direct light from the other scattered light from the point of separation is essential.
(Computational Photography) in the field of computational photography method, a sample of the global component from the reflected light of the light-reflection is removed, the specular reflection light and diffuse reflected light and the direct component is extracted have been proposed several methods. For example, in Non-Patent Document 1, discloses the use of high-frequency illumination. The illumination is high, the high-frequency spatial patterns may be applied to the same location in the global component and the direct component can be separated (for example, see Non-Patent Document 3-8.). On the other hand, in Non-Patent Document 2, Non-Patent Document 1 is different from the reflective method, a translucent object such as the separation of the components in the transmission observation (observation point passes through the observation point single scattering light directly and the other point is scattered at other points a single light scattering and multiple scattering light separation of the global component) of a transmissive technique is introduced. This approach, the high frequency of the parallel light using the illumination light to be observed are to be transmitted. Therefore, a special lens in the non-patent document 2 (telecentric lens) and the high-frequency illumination using collimated light, the parallel light to be observed has been configured.
Scope of claims (In Japanese)請求の範囲 [請求項1]
 Z方向において光センサ及び照明の焦点を試料内の観測点を含むXY平面に合わせるフォーカス手順と、
 前記フォーカス手順を行った後、前記照明の光を前記観測点に照射したときの第1光強度と前記観測点以外に照射したときの第2光強度とを前記光センサで取得する光強度取得手順と、
 前記第1光強度に含まれる、前記観測点での単一散乱光による直接成分(A)、前記観測点以外での単一散乱光による大域成分(B)、及び前記試料内での多重散乱光による大域成分(C)と、前記第2光強度に含まれる、大域成分(B)及び大域成分(C)と、を利用し、前記第1光強度から直接成分(A)と大域成分(B)及び大域成分(C)とを分離する演算を行う演算手順と、
を行う試料観察方法。

[請求項2]
 前記試料内において前記観測点を含むXY平面をZ方向に移動させて、前記フォーカス手順、前記光強度取得手順及び前記演算手順を繰り返す繰り返し手順をさらに行うことを特徴とする請求項1に記載の試料観察方法。

[請求項3]
 前記照明が、光を透過させる明部と光を遮断する暗部とが任意の比率で組み合わさるフォトマスクで形成された高周波照明であることを特徴とする請求項1又は2に記載の試料観察方法。

[請求項4]
 前記照明が、光源を発光させる明部と光源を消灯させる暗部とを任意の比率で組み合わせたパターンの照明であることを特徴とする請求項1又は2に記載の試料観察方法。

[請求項5]
 前記演算手順での減算は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、前記観測点の画像を取得することを特徴とする請求項1から4のいずれかに記載の試料観察方法。

[請求項6]
 前記演算手順での減算は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、該直接成分(A)と前記照明の波長毎の光強度とから前記観測点の吸収係数を取得することを特徴とする請求項1から4のいずれかに記載の試料観察方法。

[請求項7]
 Z方向において光センサ及び照明の焦点を試料内の観測点を含むXY平面に合わせるフォーカス機構と、
 前記フォーカス機構で前記光センサと前記照明の双方の焦点を前記観測点に合わせた状態で、前記照明の光を前記観測点に照射したときの第1光強度と前記観測点以外に照射したときの第2光強度とを前記光センサで取得する光強度取得手段と、
 前記第1光強度に含まれる、前記観測点での単一散乱光による直接成分(A)、前記観測点以外での単一散乱光による大域成分(B)、及び前記試料内での多重散乱光による大域成分(C)と、前記第2光強度に含まれる、大域成分(B)及び大域成分(C)と、を利用し、前記第1光強度から直接成分(A)と大域成分(B)及び大域成分(C)とを分離する演算を行う演算器と、
を備える試料観察装置。

[請求項8]
 前記試料内において前記観測点を含むXY平面をZ方向に移動させ、前記観測点を含むXY平面のZ方向の位置毎に、前記フォーカス機構に前記光センサ及び前記照明の焦点を前記観測点に合わさせ、前記光強度取得手段に前記第1光強度及び前記第2光強度を取得させ、前記演算器に前記演算をさせる制御器をさらに備えることを特徴とする請求項7に記載の試料観察装置。

[請求項9]
 前記照明は、光を透過させる明部と光を遮断する暗部とが任意の比率で組み合わさるフォトマスクで形成された高周波照明であり、
 前記光強度取得手段は、前記光センサと前記照明の焦点を維持したまま前記試料を任意に移動させる、もしくは前記フォトマスクを任意に移動させる駆動機構である
ことを特徴とする請求項7又は8に記載の試料観察装置。

[請求項10]
 前記照明は、光源を発光させる明部と光源を消灯させる暗部とを任意の比率で組み合わせたパターンの照明であり、
 前記光強度取得手段は、前記比率を維持したまま前記明部と前記暗部を任意に移動させる光源制御部である
ことを特徴とする請求項7又は8に記載の試料観察装置。

[請求項11]
 前記演算器は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、前記観測点の画像を取得する演算を行うことを特徴とする請求項7から10のいずれかに記載の試料観察装置。

[請求項12]
 前記演算器は、前記第1光強度から前記第2光強度を減算して直接成分(A)を計算し、該直接成分(A)と前記照明の波長毎の光強度とから前記観測点の吸収係数を取得する演算を行うことを特徴とする請求項7から10のいずれかに記載の試料観察方法。

[請求項13]
 請求項7から12のいずれかに記載の試料観察装置、前記照明、前記光センサ、及び前記フォーカス機構を備える顕微鏡。

  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • RESEARCH ORGANIZATION OF INFORMATION AND SYSTEMS
  • Inventor
  • SHIMANO, Mihoko
  • BISE, Ryoma
  • ZHENG, Yinqiang
  • SATO, Imari
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG
Please contact us by E-mail or facsimile if you have any interests on this patent.

PAGE TOP

close
close
close
close
close
close