Top > Search of International Patents > METHOD FOR PRODUCING COMPOSITE INCLUDING METAL COATED WITH SOLID MICROPARTICLES

METHOD FOR PRODUCING COMPOSITE INCLUDING METAL COATED WITH SOLID MICROPARTICLES meetings

Foreign code F190009842
File No. (2017-024)
Posted date Jul 25, 2019
Country WIPO
International application number 2018JP038040
International publication number WO 2019078100
Date of international filing Oct 12, 2018
Date of international publication Apr 25, 2019
Priority data
  • P2017-200202 (Oct 16, 2017) JP
Title METHOD FOR PRODUCING COMPOSITE INCLUDING METAL COATED WITH SOLID MICROPARTICLES meetings
Abstract Provided is a feature with which it is easy to accumulate solid microparticles and also form a pattern, which was difficult to achieve in the prior art. A method for producing a composite including a metal coated with solid microparticles, the method including a step in which: a metal is deposited, by radiation of ultrashort-pulse laser light, in a solution that includes metal ions, a colloid, and/or a complex; and solid microparticles dispersed in the solution coat the deposited metal, the solid microparticles comprising metal oxide particles, non-metal oxide particles, or ceramic particles.
Outline of related art and contending technology BACKGROUND ART
In recent years, various dry coating due to collision of the fine particles in which an attempt is made. This technique, the kinetic energy of the particulates, by the collision, both temporally and spatially and locally by converting it into thermal energy, the material to a high temperature (higher than the melting point), caused by the binding particles, the coating is formed. Fine particles of the coating due to collision as an example, first, and a method using an electric field. More specifically, electrostatic coating (EPID) microparticle bombardment method (raw material particles in hardness than the lower substrate material is used, a method for embedding fine particles in the raw material of the substrate), the cluster ion beam method or the like. In addition, the method according to the transport gas (a gas deposition method (GD) ) also. According to this method, the metal nano-crystal film at room temperature can be formed. In addition, the film density of the film formed by this method is, about 55-80% of the theoretical density is considered, in order to obtain electrical conduction of the bulk material, the crystal growth is necessary due to the heat. Further, the aerosol deposition method (AD) is noted (Patent Document 1). According to this method, a ceramic material including a metal at room temperature, a dense and high-hardness film can be made therein. In addition, a fine pattern can be obtained without etching is also reported, such as the working environment is the difficulty of handling fine powders. May be any of these methods, but require a large-scale device.
On the other hand, as the laser used in laser light irradiation, the ultrashort pulsed-laser, utilizing a very short time width to the main, prior to the thermal effect on the material characteristics such as very large energy is considered to have instantaneously. For example, in Non-Patent Document 1, an example of machining by the ultrashort pulse laser has been reported, according to this, copper as a target (pico second) pulse 10ps when irradiated with a laser beam, the electron temperature may reach several thousand °C surface of the other hand, the thermal diffusion length is equal to or less than the estimated µm.
Therefore, a silver ion solution is irradiated with an ultrashort pulsed laser light, and reducing the metal ions in the solution to precipitate silver has been reported. For example, in Non-Patent Document 2, the wavelength 800nm, pulse width 80fs, frequency 82MHz, the output 14.97mW of a high intensity laser beam irradiation by reduction of silver ions, silver dot is obtained and reported. In addition, in Non-Patent Document 3, the near-infrared light source of wavelength 1064nm, wavelength 532nm or 633nm of the visible light source is used, a relatively weak continuous oscillation by utilizing a pulsed laser, by utilizing reducing reaction of silver nitrate and silver nanoparticles formed on a glass substrate patterned assembly was reported.
These laser light irradiation in order to perform the patterning material, material to be processed is the laser beam having an appropriate light absorption characteristics becomes essential. For example, Ag ink is irradiated with laser light to the metal (Ag) may be formed of a pattern, the ink is moderately absorbed by the laser light being sheared.
Ultrashort pulse laser light in the oscillation wavelength of the light is focused inside the transparent glass and a high, only near the focusing point can be processed directly. Is the non-patent document 4, an example of processing of a transparent material by the femtosecond laser has been reported, the wavelength 800nm, pulse width of the pulse light 120fs is irradiated to the silica glass, the glass inside the focal point produce induced lattice defects density has been reported. However, this approach to a solution of a solid fine particles dispersed in the light collection is difficult, also be achieved by, for the modification of the material properties of the irradiated, the property of the physical properties of the solid particles also cannot be avoided. The inventors of the present invention, according to an ultra short pulse laser, an ultra-short pulse derived from using a nonlinear optical absorption, a material having no absorption of the original methods of integrating a result of the study, the present invention achieved the present invention.
Scope of claims (In Japanese)[請求項1]
 金属のイオン、コロイド、及び/または錯体を含む溶液に、超短パルスレーザ光を照射することで金属を析出させ、前記溶液中に分散された、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子からなる固体微粒子を、前記析出した金属に被覆する工程を含むことを特徴とする、固体微粒子で被覆された金属を含む複合体の製造方法。

[請求項2]
 前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項1に記載の製造方法。

[請求項3]
 前記固体微粒子の融点が500℃~3500℃であることを特徴とする、請求項1又は請求項2に記載の製造方法。

[請求項4]
 前記固体微粒子が、0.005μm~1μmの直径を有することを特徴とする、請求項1~請求項3のいずれか1項に記載の製造方法。

[請求項5]
 前記固体微粒子の前記溶液中の濃度が、0.01質量%~3.0質量%であることを特徴とする、請求項1~請求項4のいずれか1項に記載の製造方法。

[請求項6]
 前記超短パルスレーザ光の波長が200nm~2000nmであることを特徴とする、請求項1~請求項5のいずれか1項に記載の製造方法。

[請求項7]
 前記超短パルスレーザ光のフルエンスが0.01mJ/cm 2~10mJ/cm 2であることを特徴とする、請求項1~請求項6のいずれか1項に記載の製造方法。

[請求項8]
 前記超短パルスレーザ光の繰返し周波数が1Hz~500MHzであることを特徴とする、請求項1~請求項7のいずれか1項に記載の製造方法。

[請求項9]
 前記溶液に基板を浸漬させる工程、及び
 前記基板の表面に沿って前記超短パルスレーザ光のビームスポットを移動させる工程
をさらに含むことを特徴とする、請求項1~請求項8のいずれか1項に記載の製造方法。

[請求項10]
 前記溶液に基板を浸漬させる工程、及び
 前記基板の表面から、前記基板から離れた前記溶液中の所定の位置に前記超短パルスレーザ光のビームスポットを移動させる工程
をさらに含むことを特徴とする、請求項1~請求項8のいずれか1項に記載の製造方法。

[請求項11]
 固体微粒子で被覆された金属を含む複合体であって、
 前記金属は、溶液中に金属のイオン、コロイド、及び/または錯体として存在し、該溶液に超短パルスレーザ光を照射することで析出しうるものであり、
 前記固体微粒子は、金属酸化物粒子、非金属酸化物粒子、又はセラミクス粒子であり、
 前記金属がコアを形成し、該コアがその内側に空洞を有する
ことを特徴とする、前記複合体。

[請求項12]
 前記金属が、銀、銅、ニッケル、鉛、錫、白金及び金からなる群から選ばれることを特徴とする、請求項11に記載の複合体。

[請求項13]
 前記固体微粒子の融点が500℃~3500℃であることを特徴とする、請求項11又は請求項12に記載の複合体。

[請求項14]
 前記固体微粒子が、0.005μm~1μmの直径を有することを特徴とする、請求項11~請求項13のいずれか1項に記載の複合体。

  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • YAMAGATA UNIVERSITY
  • Inventor
  • NISHIYAMA HIROAKI
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG

PAGE TOP

close
close
close
close
close
close