TOP > 外国特許検索 > Neutron source and neutron generator

Neutron source and neutron generator UPDATE 実績あり

外国特許コード F190009910
整理番号 08004-US
掲載日 2019年8月26日
出願国 アメリカ合衆国
出願番号 201314382132
公報番号 20150117584
公報番号 10418140
出願日 平成25年3月6日(2013.3.6)
公報発行日 平成27年4月30日(2015.4.30)
公報発行日 令和元年9月17日(2019.9.17)
国際出願番号 JP2013056188
国際公開番号 WO2013133342
国際出願日 平成25年3月6日(2013.3.6)
国際公開日 平成25年9月12日(2013.9.12)
優先権データ
  • 特願2012-049614 (2012.3.6) JP
  • 2013JP56188 (2013.3.6) WO
発明の名称 (英語) Neutron source and neutron generator UPDATE 実績あり
発明の概要(英語) The present invention provides a novel neutron source. A neutron source (1) of the present invention includes a neutron producing material layer (3) and a metal layer (2), and the metal layer (2) contains a metal element which has a high hydrogen diffusivity and generates radionuclides having a short half-life upon receipt of irradiation of neutron beams.
従来技術、競合技術の概要(英語) BACKGROUND ART
In recent years, instead of a method of producing neutron beams with high energy efficiency as used in a large facility, there has been tried to be developed a method of producing neutron beams with use of low energy beams. In such a method, neutron beams are produced by, for example, irradiating a target (e.g., Be, Li, or the like) with proton beams to thereby cause a nuclear reaction. This method can produce neutron beams with use of extremely low energy proton beams.
According to the above method, for example, there is no need to provide a gigantic radiation blocking structure which can be accepted only in a large facility. It is therefore considered that a neutron source employing the above method is extremely suitable for use in a small facility. In particular, in a case where proton beams having an energy of not more than 13 MeV are used, the neutron source can be easily handled because an amount of a resultant radioactivated material is extremely low.
However, low energy proton beams penetrate a target extremely shallowly. Therefore, a proton, with which a material is irradiated becomes hydrogen and the hydrogen is easily accumulated in the target locally. In view of this, it is known that a target is broken mainly by a mechanism of hydrogen embrittlement for an extremely short time. This phenomenon is called blistering. From a practical standpoint, the blistering is a fatal problem in a low energy neutron generator employing the above method.
In view of this problem, various researches have been conducted. There is reported a neutron source for producing neutron with use of a Li (p, n) reaction in which Li is used (Non-patent Literatures 1-4).
In Non-patent Literatures 1 through 3, blistering of a Li target was verified. Specifically, Non-patent Literatures 1 through 3 report that, in a case where a Li target is irradiated with proton beams of 2.5 MeV or 1.9 MeV, blistering occurs due to a beam current having 10 mA after 3.5 hours from this irradiation. Those literatures conclude that the blistering is not problematic from a practical standpoint, because a single irradiation time period in a BNCT therapy (Boron Neutron Capture Therapy) is shorter than the above time period.
Non-patent Literature 4 reports a structure for preventing hydrogen embrittlement of a target. According to the report, protons (hydrogen atoms) which have passed through Li are absorbed and diffused by the structure in which a thin film made from Pd having high hydrogen transparency is formed under Li.
Non-patent Literature 5 shows a result of simulation for preventing hydrogen embrittlement with use of a target other than Li. From the simulation, such a result was obtained that, when a neutron source is formed by joining thin Be and Nb, hydrogen embrittlement is preventable because almost all irradiated proton beams penetrate Be and are remained in Nb. Therefore, there is a possibility that the structure stably prevents hydrogen embrittlement of a neutron source for a long time.
Non-patent Literature 6 reports results of tests regarding conditions for causing blistering in various metals when the various metals are irradiated with proton beams. The test is carried out by observing the metals which have been irradiated with proton beams of 200 keV with use of, for example, an electron microscope by an optical method. As the result of this, it is reported that blistering does not occur in V and Ta under the tested conditions.
特許請求の範囲(英語) [claim1]
1. A neutron source, comprising:
a neutron producing material layer for producing neutron beams upon receipt of irradiation by proton beams or deuteron beams, wherein the neutron producing material is solid; and
a metal layer joined with the neutron producing material layer,
the metal layer containing a metal element that has a hydrogen diffusion coefficient of not less than 10-11 (m2/sec.) at 60° C. and generates radionuclides upon receipt of the irradiation of the neutron beams, said radionuclides having a largest total radiation dose having a half-life of not more than 12 hours, wherein the metal element is selected from the group consisting of V; an alloy of V and Ni; an alloy of V and Ti; an alloy of Ti and Ni; and an alloy of V, Ni, and Ti,
the neutron producing material layer containing a neutron producing material which is selected from the group consisting of Be, a Be compound, Li, and a Li compound.

[claim2]
2. The neutron source as set forth in claim 1,
wherein the neutron producing material layer has a thickness of 50 μm to 1.2 mm.

[claim3]
3. The neutron source as set forth in claim 1,
wherein the neutron producing material layer and the metal layer are joined by diffusion bonding or brazing.

[claim4]
4. A neutron generator, comprising
a neutron source recited in claim 1, wherein the neutron generator comprises a proton beam generation section or a deuteron beam generation section.

[claim5]
5. The neutron source as set forth in claim 1,
wherein the neutron producing material layer contains a neutron producing material which is selected from the group consisting of Be and a Be compound.

[claim6]
6. The neutron generator as set forth in claim 5,
wherein the proton beams or deuteron beams have an energy within a range of 2.5 MeV to 13.8 MeV.
  • 発明者/出願人(英語)
  • Yamagata Yutaka
  • Ju Jungmyoung
  • Hirota Katsuya
  • RIKEN
国際特許分類(IPC)

PAGE TOP

close
close
close
close
close
close