Top > Search of International Patents > MAGNETIC BODY OBSERVATION METHOD, AND MAGNETIC BODY OBSERVATION DEVICE

MAGNETIC BODY OBSERVATION METHOD, AND MAGNETIC BODY OBSERVATION DEVICE NEW_EN meetings

Foreign code F190009977
File No. (Q20072JP)
Posted date Oct 28, 2019
Country WIPO
International application number 2019JP012018
International publication number WO 2019182097
Date of international filing Mar 22, 2019
Date of international publication Sep 26, 2019
Priority data
  • P2018-054701 (Mar 22, 2018) JP
Title MAGNETIC BODY OBSERVATION METHOD, AND MAGNETIC BODY OBSERVATION DEVICE NEW_EN meetings
Abstract A magnetic body observation method according to the present invention includes an irradiating step of irradiating one region of a specimen (S) with an excitation beam (E1) to cause a magnetic element contained in the specimen (S) to radiate characteristic X-rays (X1), a detecting step of detecting the respective intensities of right-hand circularly polarized light and left-hand circularly polarized light included in the characteristic X-rays (X1), and a calculating step of calculating a difference between the intensity of the right-hand circularly polarized light and the intensity of the left-hand circularly polarized light. By referring to this difference, restrictions on the sample (S) are relaxed, and the magnetization orientation or the magnetization magnitude can be measured precisely.
Outline of related art and contending technology BACKGROUND ART
Of a surface of a geometric structure is a micro, an optical microscope (SEM: Scanning Electron Microscope) or a scanning electron microscope can be observed easily. In the surface of the material 2 may be a two-dimensional distribution of the elemental composition of the microparticles, in a scanning electron microscope in accordance with the characteristics of the electron generated by X ray can be detected, it is possible to visually recognize. For example, as described in Patent Document 1, has a function of such a scanning electron microscope is widely used. On the other hand, the permanent magnet, the electromagnetic steel plate, such as a magnetic recording medium, based on the magnetic material in the development of a material, the magnetic domain (magnetization direction of the uniform region) 2 of a one-dimensional structure (domain structure) can be recognized it is desirable.
For observing the magnetic domain structure of a scanning type electron microscope is given to the function as a technique of, for example, Non-Patent Document 1 and the spin of the SEM. By electron beam irradiation of the primary electrons 2 emitted from the ferromagnetic layer spin polarization is, with the magnetization of the magnetic material associated with. Patent Document 1 in the spin of the SEM, by utilizing this, the secondary electron 2 by measuring the spin polarization, the scanning type electron microscope with secondary electron image 2 of the normal three-dimensional structure 2 of the magnetization (magnetic domain structure 2 two-dimensionally) display the form of an image.
In addition, in Patent Document 2, the magnetic domain structure can be recognized as a magnetic force microscope has been described. Patent Document 2 in the magnetic force microscope, an atomic force microscope cantilever used in a magnetic film by the application, the leakage magnetic field from the sample mapping is enabled, thereby the image is recognized as the magnetic domain structure. In addition, in Patent Document 3, the spin injection with respect to the joining member of the voltage is applied, the heat image (infrared image) of the sample by acquiring an image in which the magnetic domain structure can be recognized by observing apparatus is described.
In addition, as methods for observing the magnetic domain structure, a magneto-optic Kerr effect microscope observation method has been known. In this method, visible light or ultraviolet light is irradiated onto the surface of a magnetic specimen, measuring a change of the polarization of the reflected light technique. In this method, the object to be measured by a magneto-optical Kerr effect according to the magnitude of magnetization and the magnetization direction of the polarization of the reflected light is changed can be used to observe the magnetic domain structure.
In addition, as another method for observing the magnetic domain structure, magnetic circular dichroism (XMCD) X-ray microscope observation method is also known. In this method, X-ray of circularly polarized light irradiated to the sample of the magnetic body is absorbed by the sample when the ratio of the X lines of the right and left circularly polarized light in the direction of rotation (MCD) being different depending on the nature and use, the rotation direction of the left and right circularly polarized light from the difference between the rate of absorption, and the direction of magnetization of a sample to measure a magnitude of the magnetization. XMCD magnetic domain can be observed using a microscope, in the measurement sample used for the absorption edge of the specific elements, to selectively measure the element of interest (element selective measurements) can be.
XMCD microscope described above, the soft X-ray is irradiated according to the X-ray microscope and X-ray microscope and MCD MCD can be classified as hard. MCD as soft X-ray microscope, transmission type, type electron yield, the ion yield-conversion and the like are exemplified. MCD as hard X-ray microscope, transmission, fluorescence yield type and the like are exemplified.
Scope of claims (In Japanese)[請求項1]
 磁性体を含む試料における磁化の向き又は磁化の大きさを観察する方法であって、
 前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を前記試料上の一領域に照射する照射工程と、
 前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に検出した2つの強度として認識する検出工程と、
 前記検出工程において認識された前記2つの強度の差を算出する算出工程と、
を含んでいることを特徴とする磁性体観察方法。

[請求項2]
 前記励起線は、電磁波ビームである、
ことを特徴とする請求項1に記載の磁性体観察方法。

[請求項3]
 前記励起線は、X線を除く電磁波ビームである、
ことを特徴とする請求項2に記載の磁性体観察方法。

[請求項4]
 前記励起線は、荷電粒子線である、
ことを特徴とする請求項1に記載の磁性体観察方法。

[請求項5]
 磁性体を含む試料における磁化の向きまたは磁化の大きさを観察する装置であって、
 前記試料に照射されることによって前記磁性体を構成する元素に特性X線を放射させる励起線を発する励起線源と、
 前記励起線の照射によって前記元素が発した前記特性X線を、円偏光成分の回転方向毎に右円偏光成分または左円偏光成分として検出する検出部と、
 前記右円偏光成分の強度と前記左円偏光成分の強度との差に基づいて算出された算出値を出力させるデータ処理部と、
を備えていることを特徴とする磁性体観察装置。

[請求項6]
 前記励起線源は、前記試料上の励起線照射位置が掃引されるように前記励起線を前記試料上に照射させ、
 前記データ処理部は、前記算出値を前記励起線照射位置の掃引に伴い認識し、前記算出値を前記試料上の前記励起線が照射された領域に対応させて表示した画像として出力させる、
ことを特徴とする請求項5に記載の磁性体観察装置。

[請求項7]
 前記検出部は、前記特性X線に対する1/4波長板を具備する、
ことを特徴とする請求項5又は6に記載の磁性体観察装置。

[請求項8]
 前記検出部は、前記1/4波長板を透過した、直線偏光成分を含む前記特性X線に対して、偏光方向に対応して異なる強度を付与する偏光子を具備する、
ことを特徴とする請求項7に記載の磁性体観察装置。

[請求項9]
 前記励起線は、電磁波ビームである、
ことを特徴とする請求項5~8の何れか1項に記載の磁性体観察装置。

[請求項10]
 前記励起線は、X線を除く電磁波ビームである、
ことを特徴とする請求項9に記載の磁性体観察装置。

[請求項11]
 前記励起線は、荷電粒子線である、
ことを特徴とする請求項5~8の何れか1項に記載の磁性体観察装置。

[請求項12]
 前記励起線は、電子線であり、
 走査型電子顕微鏡画像または透過型電子顕微鏡画像である顕微鏡画像を取得する画像取得部をさらに備え、
 前記データ処理部は、前記顕微鏡画像と、前記励起線が照射された領域と、を対応させて表示した画像として出力させる、
ことを特徴とする請求項11に記載の磁性体観察装置。

[請求項13]
 前記試料と前記検出部との間に前記特性X線を平行化する平行化光学系が設けられている、
ことを特徴とする請求項5~12の何れか1項に記載の磁性体観察装置。

[請求項14]
 前記平行化光学系は、モンテル型多層膜ミラーにより構成されている、
ことを特徴とする請求項13に記載の磁性体観察装置。
  • Applicant
  • ※All designated countries except for US in the data before July 2012
  • NATIONAL INSTITUTES FOR QUANTUM AND RADIOLOGICAL SCIENCE AND TECHNOLOGY
  • Inventor
  • INAMI, Toshiya
  • WATANUKI, Tetsu
  • UENO, Tetsuro
  • YASUDA, Ryo
IPC(International Patent Classification)
Specified countries National States: AE AG AL AM AO AT AU AZ BA BB BG BH BN BR BW BY BZ CA CH CL CN CO CR CU CZ DE DJ DK DM DO DZ EC EE EG ES FI GB GD GE GH GM GT HN HR HU ID IL IN IR IS JO JP KE KG KH KN KP KR KW KZ LA LC LK LR LS LU LY MA MD ME MG MK MN MW MX MY MZ NA NG NI NO NZ OM PA PE PG PH PL PT QA RO RS RU RW SA SC SD SE SG SK SL SM ST SV SY TH TJ TM TN TR TT TZ UA UG US UZ VC VN ZA ZM ZW
ARIPO: BW GH GM KE LR LS MW MZ NA RW SD SL SZ TZ UG ZM ZW
EAPO: AM AZ BY KG KZ RU TJ TM
EPO: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
OAPI: BF BJ CF CG CI CM GA GN GQ GW KM ML MR NE SN ST TD TG

PAGE TOP

close
close
close
close
close
close