Top > Search of Japanese Patents > 3-DIMENSIONAL ARTICLE PRODUCED BY OPTICAL MOLDING METHOD AND PERFORMED WITH CELL ADAPTATION TREATMENT

3-DIMENSIONAL ARTICLE PRODUCED BY OPTICAL MOLDING METHOD AND PERFORMED WITH CELL ADAPTATION TREATMENT

Patent code P110004240
File No. AF02P005
Posted date Jul 8, 2011
Application number P2008-279411
Publication number P2010-104285A
Patent number P5114362
Date of filing Oct 30, 2008
Date of publication of application May 13, 2010
Date of registration Oct 19, 2012
Inventor
  • (In Japanese)生田幸士
  • (In Japanese)井上佳則
Applicant
  • (In Japanese)国立研究開発法人科学技術振興機構
Title 3-DIMENSIONAL ARTICLE PRODUCED BY OPTICAL MOLDING METHOD AND PERFORMED WITH CELL ADAPTATION TREATMENT
Abstract PROBLEM TO BE SOLVED: To provide a 3-dimensional structural material obtained by an optical molding method, and detoxified and imparted with a cell adaptability (material property that the material is non-toxic to cells and does not give any bad effect to the survival activity of the cells) by a post cure treatment.
SOLUTION: This method for performing the post cure treatment of the 3-dimensional article obtained by the optical molding method is provided by accelerating the cure by irradiating with an UV lamp for 1 hr, and then heat-treating the 3-dimensional article at least at 175°C for at least 6 hr. In this case, there is no problem if the heat-treating temperature is a temperature exceeding a glass transition temperature which is an index of the heat softening temperature of an adopted material. In this method, although the 3-dimensional article having a fine structure molded by the optical molding method is taken as an object, in the case of a fine structural article, the deformation by own weight in the heat treatment, which becomes a problem, is reduced by a size rule, and as a result, the dimension of the obtained 3-dimensional article does not almost change in before and after the treatment.
Outline of related art and contending technology (In Japanese)

マイクロ光造形法は光硬化性樹脂にレーザ照射して任意の立体的なマイクロ構造を作製可能な微細加工の手法である。1992年、本発明者である生田らにより世界で初めて5μmの3次元分解能が達成され(非特許文献1参照)、その後多くの研究が展開されてきた(非特許文献2参照)。さらにサブミクロンの分解能を有したナノ光造形法も開発されている。近年では微細流路内で化学反応や分析を行うμ-TAS やMEMSデバイスの開発に応用も試みられ始めている(非特許文献3~5参照)。
しかし、市販されている光造形樹脂には生体適合性がないため、生体や細胞に直接触れるデバイスには使用できないという根本的な問題があった(非特許文献6~8参照)。
この問題を解決するため、本発明者らは生体適合性を持ち、かつ十分な硬化特性と硬化精度を有する新規の光硬化性樹脂を開発する研究アプローチではなく、光硬化特性が保証され、特性が安定している市販のエポキシ系光造形樹脂に細胞適合性を付与するという、より汎用性と実用性にこだわった研究アプローチに挑戦した。
従来、光造形物が直接細胞や生体と接触する応用としては、以下の研究が存在する。
第1の研究は、細胞毒性の高い光重合開始剤を避け、caprolactoneやpoly(propylene fumarate)などの生分解性の高分子を素材に使用して光造形を行う手法である(非特許文献8~11参照)。この手法は樹脂の合成工程や調合工程が不可欠となる。さらに、再生医療用の生分解性の細胞の足場作製を目的にしているため、本研究の目的である非分解性のデバイスには適用できない。
第2の研究は、Polyethylene grycolなどのhydrogelを材料に細胞の足場を作製する手法である(非特許文献7、13参照)。hydrogelの表面や内部で細胞培養が可能であることが報告されているが、hydrogelは強度が低いため、デバイス作製には適用困難である。さらに、乾燥収縮に起因した加工精度の問題もあり本研究の目的を満たさない。
第3の研究は市販の光造形樹脂を用いて立体的な格子構造の表面に細胞を培養した研究がある。しかし平面構造での細胞培養には失敗している(非特許文献14)。

1)非特許文献 Ikuta K, Hirowatari K. Real three dimensional micro fabrication using stereo lithography and metal molding. Proceedings of the IEEE Workshop on Microelectromechanical Systems, MEMS'93. 1993:42-47.
2)非特許文献 Bertsch A, Jiguet S, Bernhard P, Renaud P. Microstereolithography: a Review. Mat. Res. Soc. Symp. Proc. 2003,LL1.1.1-LL1.1.13
3)非特許文献 Maruo S, Ikuta K, Korogi H. Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 2003;82:133-135
4)非特許文献 Kawata S, Sun HB, Tanaka T, Takada K. Finer features for functional microdevices. Nature 2001;412:697-698
5)非特許文献 Maruo S, Ikuta K. Submicron stereolithography for the production of freely movable mechanism by using single-photon polymerization. Sensor Actuat A-phys 2002;100:70-76.
6)非特許文献 Lu Y, Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev. 2004 ;11:1621-33.
7)非特許文献 Tsang VL, Bhatia SN. Three-dimensional tissue fabrication. Adv Drug Deliv Rev. 2004;11:1635-47.
8)非特許文献 Popov VK, Evseev AV, Ivanov AL, Roginski VV, Volozhin AI, Howdle SM. Laser stereolithography and supercritical fluid processing for custom-designed implant fabrication.J Mater Sci Mater Med. 2004 ;2:123-8.
9非特許文献 Lee JW, Lan PX, Kim B, Lim G, Cho DW. 3D scaffold fabrication with PPF/DEF using macro-stereolithography. Microelectron Eng 2007;84:1702-1705.
10)非特許文献 Matsuda T, Mizutani M. Liquid acrylate-endcapped biodegrable poly(e-caprolacton-co-trimethyrene carbonate). II. Computer-aided stereolithographic microarchitectual surface photoconstructs. J Biomed Mater Res. 2002;3:395-403.
11)非特許文献 Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules. 2007;4:1077-84.
12)非特許文献 Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater. 2003;2:65-9.
13)非特許文献 Arcaute K, Mann BK, Wicker RB, Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs with Encapsulated Cells. Ann Biomed Eng 2006;34:1429-1441.
14非特許文献 Lee SJ,Kang HW, Kang TY, Kim B, Lim G, Rhie JW, Cho DW, Development of scaffold fabrication system using an axiomatic approach. J Micromech Microeng 2007;17:147-153.
15)非特許文献 Jones CE, Underwood CK, Coulson EJ, Taylor PJ. Copper induced oxidation of serotonin: analysis of products and toxicity. J Neurochem 2007;102:1035-1043.

Field of industrial application (In Japanese)

本発明は光造形法が属する固体自由形状製造法分野、それに用いられる光硬化性材料分野、及び材料の細胞適合性付与分野の技術に関するものであり、特に物体が長期にわたり単離された細胞と接触しながら細胞適合性に関して無毒化された物体に関するものである。

Scope of claims (In Japanese)
【請求項1】
 
光造形法により作製された3次元物体であって、前記物体は物体の少なくとも1つの部位のx、y、zのいずれかの寸法が少なくとも1mm未満の部分を有し、かつ物体の温度が物体の少なくともガラス転移温度を超えた場合に自重によって生じる変形を、寸法則の効果により減少させるものであり、
前記物体に後露光とポストベイキングの両者を併用したポストキュア処理を行うに際し、前記物体を約175°C~200°C、かつ6時間~24時間加熱する条件下でポストベイキングを行うことにより、前記ポストキュア処理された物体が少なくとも生体外において単離培養された細胞が前記物体表面で接触培養可能な細胞適合性を備えるよう無毒化されていることを特徴とする3次元物体。

【請求項2】
 
前記物体の成型材料は主剤をアクリレート、エポキシ、アクリレート・エポキシ複合体、オキセタンからなる群より選択される光硬化性物質から成形されていることを特徴とする請求項1に記載の3次元物体。

【請求項3】
 
前記物体を無毒化する際に、物体を紫外線によってさらに硬化させた後、少なくとも物体のガラス転移点温度にすることによって行われることを特徴とする請求項1又は2に記載の3次元物体。
IPC(International Patent Classification)
F-term
Drawing

※Click image to enlarge.

JP2008279411thum.jpg
State of application right Registered
Reference ( R and D project ) CREST Novel Measuring and Analytical Technology Contributions to the Elucidation and Application of Life Phenomena AREA
Please contact us by E-mail or facsimile if you have any interests on this patent.


PAGE TOP

close
close
close
close
close
close
close