Top > Search of Japanese Patents > LIVING RADICAL POLYMERIZATION METHOD

LIVING RADICAL POLYMERIZATION METHOD foreign

Patent code P180015500
File No. 2900
Posted date Nov 21, 2018
Application number P2010-210156
Publication number P2012-062449A
Patent number P5605945
Date of filing Sep 17, 2010
Date of publication of application Mar 29, 2012
Date of registration Sep 5, 2014
Inventor
  • (In Japanese)後藤 淳
  • (In Japanese)辻井 敬亘
  • (In Japanese)中村 賢一
  • (In Japanese)河合 道弘
Applicant
  • (In Japanese)国立大学法人京都大学
  • (In Japanese)東亞合成株式会社
Title LIVING RADICAL POLYMERIZATION METHOD foreign
Abstract PROBLEM TO BE SOLVED: To provide a living radical polymerization method that is inexpensive, has high activity, is environmentally superior, and does not require a radical initiator.
SOLUTION: The living radical polymerization method can be performed without using a catalyst by controlling the amount of oxygen in the gas phase of a reactor in an appropriate range. It is possible to obtain a polymer having a narrow molecular weight distribution and to dramatically reduce the cost of the living radical polymerization by subjecting monomers having radical-reactive unsaturated bonds to a radical polymerization reaction. The present invention eliminates the harmful effects of conventional catalysts, such as toxicity, low solubility, discoloration and odor, and is exceptionally superior, environmentally and economically, to conventional living radical polymerization methods.
Outline of related art and contending technology (In Japanese)

従来から、ビニルモノマーを重合してビニルポリマーを得る方法として、ラジカル重合法が周知であった。ラジカル重合法は一般に、得られるビニルポリマーの分子量を制御することが困難であるという欠点があった。また、得られるビニルポリマーが、様々な分子量を有する化合物の混合物になってしまい、分子量分布の狭いビニルポリマーを得ることが困難であるという欠点があった。具体的には、反応を制御しても、重量分子平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)として、2~3程度にまでしか減少させることができなかった。

このような欠点を解消する方法として、1990年頃から、リビングラジカル重合法が開発されている。すなわち、リビングラジカル重合法によれば、分子量を制御することが可能であり、かつ分子量分布の狭いポリマーを得ることが可能である。具体的には、Mw/Mnが2以下のものを容易に得ることが可能であることから、ナノテクノロジーなどの最先端分野に用いられるポリマーを製造する方法として脚光を浴びている。

ラジカル重合法においては、酸素はラジカル反応を阻害する物質(重合禁止剤)として知られている。そのため、一般に、酸素の存在しない雰囲気中で反応が行われる。リビングラジカル重合においても、一般には、窒素ガスまたはアルゴンなどの不活性ガスで反応容器中の雰囲気を置換して重合反応が行われていた。すなわち、リビングラジカル重合反応を行うためには、雰囲気中の酸素を極力排除することが好ましいと考えられていた。酸素を積極的にリビングラジカル重合に用いることが可能であるとは当業者は考えていなかった。ましてや、酸素の濃度または量を制御することにより、リビングラジカル重合が制御できるとはまったく当業者が予想できないことであった。

そして、リビングラジカル重合を制御するためには、従来、重合反応の進行を制御できる化合物を触媒として反応液に添加することが必要と考えられていた。そのため、触媒となる化合物を反応液に添加してリビングラジカル重合を制御することが従来から行われている。すなわち、従来の一般的なリビングラジカル重合方法においては、不活性ガスの雰囲気下において、反応液に触媒を添加して重合を制御する方法が行われている。

リビングラジカル重合法に現在用いられる触媒としては、遷移金属錯体系触媒が知られている。

遷移金属錯体系触媒としては、例えば、Cu、Ni、Re、Rh、Ruなどを中心金属とする化合物に配位子を配位させた錯体が使用されている。このような触媒は、例えば、以下の文献に記載されている。

特許文献1(特開2002-249505号公報)は、Cu、Ru、Fe、Niなどを中心金属とする錯体を触媒として使用することを開示する。

特許文献2(特開平11-322822号公報)は、ヒドリドレニウム錯体を触媒として使用することを開示する。

非特許文献1(Journal of The American Chemical Society 119,674-680(1997))は、4,4’-ジ-(5-ノニル)-2,2’-ビピリジンを臭化銅に配位させた化合物を触媒として使用することを開示する。

しかしながら、このような遷移金属錯体触媒を用いる場合には、使用量として多量の遷移金属錯体触媒が必要であり、反応後に使用された大量の触媒を製品から完全に除去することが容易でないという欠点があった。また不要となった触媒を廃棄する際に環境上の問題が発生し得るという欠点があった。さらに、遷移金属には毒性の高いものが多く、製品中に残存する触媒の毒性が環境上問題となる場合があり、遷移金属を食品包装材、生体・医療材料などに使用することは困難であった。また、反応後に製品から除去された触媒の毒性が環境上問題となる場合もあった。さらに、導電性の遷移金属がポリマーに残存するとそのポリマーに導電性が付与されてしまって、レジストや有機EL、燃料電池、太陽電池、リチウムイオン電池などの電子材料に使用することが困難であるという問題もあった。また、錯体を形成させないと反応液に溶解しないため、配位子となる化合物を用いなければならず、このために、コストが高くなり、かつ、使用される触媒の総重量がさらに多くなってしまうという問題もあった。さらに、配位子は、通常、高価であり、あるいは煩雑な合成を要するという問題もあった。また、重合反応に高温(例えば、110℃以上)が必要であるという欠点があった(例えば、上記非特許文献1では、110℃において重合を行っている)。

なお、触媒を用いる必要がないリビングラジカル重合方法も公知である。例えば、ニトロキシル系、およびジチオエステル系の方法が知られている。しかし、これらの方法においては、特殊な保護基をポリマー成長鎖に導入する必要があり、この保護基が非常に高価であるという欠点がある。また、重合反応に高温(例えば、110℃以上)が必要であるという欠点がある。さらに、生成するポリマーが好ましくない性能を有しやすいという欠点がある。すなわち、生成するポリマーがその高分子本来の色と異なる色に着色されたものになりやすく、また、生成するポリマーが臭気を有するものになりやすいという欠点がある。

他方、非特許文献2(Polymer Preprints 2005, 46(2), 245-246)および特許文献3(特開2007-92014号公報)は、Ge、Snなどを中心金属とする化合物を触媒として使用することを開示する。特許文献4(国際公開WO2008/139980号公報)は、窒素またはリンを中心金属とする化合物を触媒として使用することを開示する。非特許文献3(Polymer Preprints 2007, 56(2), 2452 高分子学会、第56回高分子討論会)はリンを中心金属とする化合物を触媒として使用することを開示する。

非特許文献1に記載されていた銅錯体触媒では、ポリマー1kgを重合する際に必要とされる触媒の費用がおよそ数千円になっていた。これに対して、ゲルマニウム触媒においては、約千円程度にまで費用が低減されるので、非特許文献2および特許文献3の発明は、触媒の費用を顕著に低減させるものであった。しかしながら、リビングラジカル重合を汎用樹脂製品等に応用するためには、さらなる低コストが求められていた。非特許文献3および特許文献4の発明は、触媒の費用をさらに低減させるものであった。

しかしながら、特許文献1-4、および非特許文献1-3には、触媒を用いないでリビングラジカル重合を制御して分子量分布の狭いポリマーを得る方法についての記載はない。

このように、従来技術においては、ハロゲンのような安価かつ汎用的な保護基を用いる場合には、ドーマント種からラジカルを可逆的に発生させるための触媒として何らかの化合物を反応液に添加することが絶対的に必要であると考えられていた。リビングラジカル重合は、ドーマント種からラジカルを可逆的に発生させることをその基本的原理としているので、ドーマント種からのラジカルの発生を可逆的に制御する化合物を反応液に添加することがその反応を制御する上での当然の前提と考えられていたからである。すなわち、ハロゲンのような安価かつ汎用的な保護基を用いる場合に、触媒を添加することなくリビングラジカル重合を行うことは不可能であることが技術常識であったのである。上述した特許文献1~4および非特許文献1~3は、いずれも、このような技術常識に基づいて記載されている。

Field of industrial application (In Japanese)

本発明は、リビングラジカル重合法に関する。

Scope of claims (In Japanese)
【請求項1】
 
リビングラジカル重合方法であって、
ラジカル反応性モノマー、ラジカル開始剤、および炭素-ハロゲン結合を有する有機ハロゲン化物を含む反応液を反応容器に入れて重合を行う工程を包含し、
ここで、重合工程における、反応容器中の液相の体積1Lあたりの該反応容器中の気相の酸素の量が1~30ミリモルであ
ここで、該有機ハロゲン化物中のハロゲンがヨウ素である、
方法。

【請求項2】
 
請求項1に記載の方法であって、重合工程の際に、反応容器中の液相の体積1Lあたりの反応容器中の気相中の酸素の量が1.5~30ミリモルである、方法。

【請求項3】
 
請求項1または2に記載の方法であって、前記重合の際に、ドーマント種からラジカルを可逆的に発生させるための触媒またはドーマント種からラジカルを可逆的に発生させるための触媒を反応液中に生成させるための化合物として、気体の酸素以外の化合物が添加されない、方法。

【請求項4】
 
請求項1~3のいずれか1項に記載の方法であって、前記容器の気相中の酸素濃度が1体積%~10体積%である、方法。

【請求項5】
 
請求項1~3のいずれか1項に記載の方法であって、前記容器の気相が、空気である、方法。

【請求項6】
 
請求項1~5のいずれか1項に記載の方法であって、前記有機ハロゲン化物中のハロゲンが結合している炭素原子に、2つのメチル基が結合しているか、または1つのメチル基および1つの水素が結合している、方法。

【請求項7】
 
請求項1~6のいずれか1項に記載の方法であって、ラジカル反応性モノマーが、アクリル酸、アクリレート、メタクリル酸、メタクリレートまたはスチレンである、方法。

【請求項8】
 
請求項1~7のいずれか1項に記載の方法であって、
反応液に溶媒が使用されていないか、または、使用される溶媒の量が、前記モノマー100重量部に対して120重量部以下であり、
前記ラジカル開始剤の濃度が、5~150mMであり、
前記有機ハロゲン化物の濃度が、10~100mMである、
方法。

【請求項9】
 
ポリマーの製造方法であって、
ラジカル反応性モノマー、ラジカル開始剤、および炭素-ハロゲン結合を有する有機ハロゲン化物を含む反応液を反応容器に入れて重合を行う工程を包含し、
ここで、重合工程における、反応容器中の液相の体積1Lあたりの該反応容器中の気相の酸素の量が1~30ミリモルであ
ここで、該有機ハロゲン化物中のハロゲンがヨウ素である、
製造方法。
IPC(International Patent Classification)
F-term
State of application right Registered
Please contact us by e-mail or facsimile if you have any interests on this patent. Thanks.


PAGE TOP

close
close
close
close
close
close
close