TOP > 国内特許検索 > 超音速フリージェット物理蒸着装置で用いる超音速ノズル、超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法、超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法及びコンピュータプログラム

超音速フリージェット物理蒸着装置で用いる超音速ノズル、超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法、超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法及びコンピュータプログラム 新技術説明会

国内特許コード P190015981
整理番号 16-28-01
掲載日 2019年4月23日
出願番号 特願2017-036799
公開番号 特開2018-141208
出願日 平成29年2月28日(2017.2.28)
公開日 平成30年9月13日(2018.9.13)
発明者
  • 湯本 敦史
出願人
  • 学校法人芝浦工業大学
発明の名称 超音速フリージェット物理蒸着装置で用いる超音速ノズル、超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法、超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法及びコンピュータプログラム 新技術説明会
発明の概要 【課題】より広い領域を成膜可能とするとともに成膜領域の表面粗さがより平坦に近い粗さを実現する。
【解決手段】超音速ノズル1において、流入口部2、流入口側空洞部3、スロート部4、流出口側空洞部5及び流出口部6を備え、比熱比γであるガスが流されたときに、流路10の各部における流体の速度がマッハ数Mの速度となるように、流入口部2、流入口側空洞部3、流出口側空洞部5及び流出口部6の各部の断面積A、スロート部4の各部の断面積Aとが所定の式を満たす形状となっている。そのため、流路10の各部における流体の速度をマッハ数Mにすることができる。スロート部4、流出口側空洞部5及び流出口部6での流路10の横断面の形状が矩形であるため、同じ断面積の円形の横断面の超音速ノズルよりも、より広い領域を成膜可能するとともに成膜領域の表面粗さがより平坦に近い粗さを実現できる。
【選択図】図1
従来技術、競合技術の概要

低温でも実行可能な成膜装置として、例えば超音速フリージェット(SupersonicFree Jet:SFJ)物理蒸着(Physical Vapor Deposition:PVD)装置が知られている。SFJ-PVD装置とは、不活性ガス雰囲気において成膜原料素材をレーザ等で気化させ,形成させた微粒子を、超音速ノズルを用いて微粒子を含むガスを超音速に加速させ、成膜チャンバの内部に固定された基板に噴出する。噴出ガスに含まれる微粒子は、基板上に堆積し基板上に薄膜が成膜される。例えば、特許文献1には、SFD‐PVDで用いられる超音速ノズルであって、流入口部から流出口部にかけてその各部断面が円形でその内径が変化している事を特徴とし、さらに内径が最小となるスロート部の内径が0.1mm~0.3mmである超音速ノズルが開示されている。

産業上の利用分野

本発明は、超音速フリージェット物理蒸着装置で用いる超音速ノズル、超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法、超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法及びコンピュータプログラムに関する。

特許請求の範囲 【請求項1】
流路を流体が流れる方向に直交する横断面での前記流路の断面積が前記流路の各部で変化している超音速フリージェット物理蒸着装置で用いる超音速ノズルであって、
前記流体が流入する流入口部と、
前記流体が流出する流出口部と、
前記流路の各部の中で前記断面積が最小であるスロート部と、
前記流入口部と前記スロート部とを接続する流入口側空洞部と、
前記流出口部と前記スロート部とを接続する流出口側空洞部と、
を備え、
前記流路に前記流体として比熱比(定圧比熱と定容比熱の比)γであるガスが流されたときに、前記流路の各部における前記流体の速度がマッハ数Mの速度となるように、前記流入口部、前記流入口側空洞部、前記流出口側空洞部及び前記流出口部の各部の断面積Aと、前記スロート部の断面積Aとが式(1)を満たす形状となっており、
前記スロート部、前記流出口側空洞部及び前記流出口部での前記流路を前記流体が流れる方向に直交する前記横断面の形状が矩形である、超音速フリージェット物理蒸着装置で用いる超音速ノズル。
【数1】
(省略)

【請求項2】
前記流出口側空洞部は、
前記スロート部に連続する初期膨張部と、
前記流出口部に連続する相殺部と、
を有し、
前記横断面の前記矩形の長辺に直交する縦断面での前記流路の前記流出口側空洞部の内壁面は、前記初期膨張部で発生した膨張波が膨張波同士の衝突によって角度が変化しながら前記相殺部の前記内壁面に衝突する際に発生する圧縮波を相殺するような形状である、請求項1に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズル。

【請求項3】
前記スロート部での前記横断面の前記矩形の短辺の長さに対する前記矩形の長辺の長さの比は、0.3以上10以下である、請求項1又は2に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズル。

【請求項4】
流路を流体が流れる方向に直交する横断面での前記流路の断面積が前記流路の各部で変化し、前記流体が流入する流入口部と、流体が流出する流出口部と、前記流路の各部の中で前記断面積が最小であるスロート部と、前記流入口部と前記スロート部とを接続する流入口側空洞部と、前記流出口部と前記スロート部とを接続する流出口側空洞部とを備えた超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法であって、
前記流路に前記流体として比熱比(定圧比熱と定容比熱の比)γであるガスが流されたときに、前記流路の各部における前記流体の速度がマッハ数Mの速度となるように、前記流入口部、前記流入口側空洞部、前記流出口側空洞部及び前記流出口部の各部の断面積Aと、前記スロート部の断面積Aとが式(1)を満たす形状とし、
前記スロート部、前記流出口側空洞部及び前記流出口部での前記流路を前記流体が流れる方向に直交する前記横断面の形状を矩形とする、超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法。
【数2】
(省略)

【請求項5】
前記流出口側空洞部に、前記スロート部に連続する初期膨張部と、前記流出口部に連続する相殺部とを含め、
前記横断面の前記矩形の長辺に直交する縦断面での前記流路の前記流出口側空洞部の内壁面を、前記初期膨張部で発生した膨張波が膨張波同士の衝突によって角度が変化しながら前記相殺部の前記内壁面に衝突する際に発生する圧縮波を相殺するような形状とする、請求項4に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法。

【請求項6】
前記スロート部での前記横断面の前記矩形の短辺の長さに対する前記矩形の長辺の長さの比を、0.3以上10以下とする、請求項4又は5に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズルの製造方法。

【請求項7】
流路を流体が流れる方向に直交する横断面での前記流路の断面積が前記流路の各部で変化し、前記流体が流入する流入口部と、流体が流出する流出口部と、前記流路の各部の中で前記断面積が最小であるスロート部と、前記流入口部と前記スロート部とを接続する流入口側空洞部と、前記流出口部と前記スロート部とを接続する流出口側空洞部とを備えた超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法であって、
前記流路に前記流体として比熱比(定圧比熱と定容比熱の比)γであるガスが流されたときに、前記流路の各部における前記流体の速度がマッハ数Mの速度となるように、前記流入口部、前記流入口側空洞部、前記流出口側空洞部及び前記流出口部の各部の断面積Aと、前記スロート部の断面積Aとが式(1)を満たす形状とし、
前記スロート部、前記流出口側空洞部及び前記流出口部での前記流路を前記流体が流れる方向に直交する前記横断面の形状を矩形とする、超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法。
【数3】
(省略)

【請求項8】
前記流出口側空洞部に、前記スロート部に連続する初期膨張部と、前記流出口部に連続する相殺部とを含め、
前記横断面の前記矩形の長辺に直交する縦断面での前記流路の前記流出口側空洞部の内壁面を、前記初期膨張部で発生した膨張波が膨張波同士の衝突によって角度が変化しながら前記相殺部の前記内壁面に衝突する際に発生する圧縮波を相殺するような形状とする、請求項7に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法。

【請求項9】
前記スロート部での前記横断面の前記矩形の短辺の長さに対する前記矩形の長辺の長さの比を、0.3以上10以下とする、請求項7又は8に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法。

【請求項10】
請求項7~9のいずれか1項に記載の超音速フリージェット物理蒸着装置で用いる超音速ノズルの設計方法をコンピュータに実行させるコンピュータプログラム。
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2017036799thum.jpg
出願権利状態 公開


PAGE TOP

close
close
close
close
close
close
close