Top > Search of Japanese Patents > (In Japanese)エリプソメトリ装置およびエリプソメトリ方法

(In Japanese)エリプソメトリ装置およびエリプソメトリ方法 NEW_EN meetings

Patent code P190016334
File No. (S2016-1083-N0)
Posted date Aug 27, 2019
Application number P2018-535670
Date of filing Aug 21, 2017
International application number JP2017029829
International publication number WO2018038064
Date of international filing Aug 21, 2017
Date of international publication Mar 1, 2018
Priority data
  • P2016-163989 (Aug 24, 2016) JP
Inventor
  • (In Japanese)佐藤 邦弘
Applicant
  • (In Japanese)公立大学法人兵庫県立大学
Title (In Japanese)エリプソメトリ装置およびエリプソメトリ方法 NEW_EN meetings
Abstract (In Japanese)本発明は、測定効率を向上できるエリプソメトリ装置および方法を提供する。本方法は、45°直線偏光した球面波状の照明光Qで物体を照明し(S1)、照明光Qの集光点近くに集光点を有する球面波状の参照光Rを用いて、反射光である物体光OをホログラムIORに取得し、さらに照明光Qと同じ集光点を有する球面波参照光Lで参照光RのホログラムILRを取得する(S2)。各ホログラムをp,s偏光の各ホログラムIκOR,IκLR,κ=p,sに分離して処理し、物体光波を抽出して、物体光空間周波数スペクトルGκ(u,v),κ=p,sを生成する(S3)(S4)。振幅反射係数比ρ=Gp/Gs=tanΨ・exp(iΔ)から入射角θ毎のエリプソメトリ角Ψ(θ),Δ(θ)を得る。照明光Qが含む入射角θの異なる多数の光によって、多数の反射光のデータをホログラムに一括取得して処理できる。
Outline of related art and contending technology (In Japanese)

従来から、物質の光学特性、より一般に誘電体特性を調べる技術としてエリプソメトリ(偏光解析技術)が知られている。エリプソメトリでは、入射光が物質から反射するときの偏光状態の変化を測定する。偏光状態の変化から、物質の誘電体特性を知ることができる。偏光状態の変化は、p偏光とs偏光の振幅反射係数rp,rsの比として測定される。振幅反射係数rp,rsは複素数であって、その比である振幅反射係数比ρ=rp/rsも複素数であり、2つのエリプソメトリ角Ψ,Δによってρ=tan(Ψ)exp(iΔ)と表わされる、。測定結果として得られるエリプソメトリ角Ψ,Δは、個々の物質の光学特性および反射膜の厚さ等に依存する。エリプソメトリを用いるエリプソメトリ装置およびエリプソメトリ方法は、膜厚が光波長以下の薄膜を扱う半導体分野などにおいて、薄膜の膜特性や膜厚を測定するために用いられる。

薄膜測定用のエリプソメトリ装置は、エリプソメータと呼ばれる。エリプソメータは、薄膜から反射された光における偏光状態の変化を測定して薄膜の光学定数、膜厚、層構成構造などを求めるために用いられる。従来のエリプソメータは、偏光子を機械的に回転させる型の装置と、光弾性を利用して偏光変調する型の装置に大別される。偏光子の回転には、検光子(偏光子)の回転と補償子の回転とがある。入射光の偏光状態の設定と、反射光の偏光状態の検知とによって、入射光から反射光への変化の際の偏光状態の変化が測定される。

測定は、異なる条件のもとで、または、最適条件のもとで測定するため、偏光子を機械的に回転させたり、光弾性変調器に光を透過させて光を変調させたりしながら、反射光の光強度変化を測定することで行われる。偏光状態の設定や検知のための偏光子の機械的回転や光の位相変調の操作は、測定時間を長くする。そこで、偏光子を回転する駆動部をなくして高速化をはかるエリプソメータが提案されている(例えば、特許文献1参照)。

振幅反射係数比ρの他に、波長の情報を用いることにより薄膜測定の精度を高められる。この場合、単層膜の膜厚や光学定数の測定だけでなく多層膜の構造解析ができる。波長情報を用いるエリプソメータに、分光エリプソメータがある。分光エリプソメータは、偏光解析技術(エリプソメトリ)と分光解析技術(スペクトロスコピ)とを組み合わせて用いる。測定には、回転偏光子や回転補償子または光弾性変調器などの偏光用機器に加え、高性能な分光器が必要であり、装置が高価になる。

また、反射光などの光波を解析する技術に、光強度のデータと光波の位相のデータとを併せてホログラムと呼ばれる写真乾板などの記録媒体に記録して解析するホログラフィがある。近年のホログラフィは、撮像素子と半導体メモリなどを用いて、光波の光強度と位相とをデジタルデータとして記録したり、計算機上でホログラムを生成したりして、解析することが行われている。このようなホログラフィは、デジタルホログラフィと呼ばれている。

デジタルホログラフィにおいて、ホログラムの記録や処理の高速化と高精度化を達成するための種々の技術が提案されている。例えば、複素振幅インラインホログラムを高速かつ正確に記録して解析するために、記録したホログラムに空間周波数フィルタリングと空間ヘテロダイン変調とを適用するワンショットディジタルホログラフィが提案されている(例えば、特許文献2参照)。従来の光学顕微鏡の問題を解決するために、結像レンズを使用せずに大開口数の物体光を正確にワンショット記録する方法、記録物体光の平面波展開を行って高分解能3次元像を正確に計算機再生する方法、および無歪な高分解能3次元動画像を記録し再生できるレンズレス3次元顕微鏡が提案されている(例えば、特許文献3参照)。

また、培養液中細胞や生体組織の内部構造を高分解能で計測するために、反射型レンズレスホログラフィック顕微鏡と波長掃引レーザ光を用いる高分解能断層撮像法が提案されている(例えば、特許文献4参照)。さらに、入射角の異なる光を照射して記録した複数の大開口数物体光から開口数が1を超える物体光を合成する方法、および回折限界を超える分解能を持つ超高分解能3次元顕微鏡が提案されている(例えば、特許文献5参照)。

また、デジタルホログラフィに関連して、測定試料を透過させたビームと、透過しないビームとを干渉させてCCDで受光し、この干渉像をフーリエ変換することによって測定試料の光学定数を求める、分散フーリエ変換スペクトロメトリ(DFTS)による方法が知られている(例えば、非特許文献1参照)。同様に、測定試料を透過したビームと、透過しないビームの干渉像をフーリエ変換して光路長を計算して厚さを算出する、干渉分光法による薄膜の厚さを測定する方法が知られている(例えば、非特許文献2参照)。さらに、ホログラムを用いて生成した平行光を測定試料に照射し、測定試料を透過した光を分割して、位相を変化させた後に干渉させ、その干渉縞の強度変化を測定して膜厚を算出する、干渉コントラスト法膜厚測定方法が知られている(例えば、特許文献6参照)。

Field of industrial application (In Japanese)

本発明は、エリプソメトリ装置およびエリプソメトリ方法に関する。

Scope of claims (In Japanese)
【請求項1】
 
物体から放射される光の偏光解析に用いるエリプソメトリ装置であって、
p偏光とs偏光とを含み偏光状態が既知の非平行の光である照明光(Q)によって照明された物体から放射される物体光(O)のデータを、オフアクシス参照光(R)を用いて、p偏光のホログラムとs偏光のホログラムとに分離可能に、物体光ホログラム(IOR)として取得し、前記オフアクシス参照光(R)のデータを、インライン球面波参照光(L)を用いて、p偏光のホログラムとs偏光のホログラムとに分離可能に、参照光ホログラム(ILR)として取得するデータ取得部と、
前記物体光(O)の偏光解析を行うデータ解析部と、を備え、
前記データ解析部は、
前記データ取得部によって取得された前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)のデータを用いて前記物体光(O)のp偏光の光波とs偏光の光波のそれぞれを表す光波ホログラム(gκ(x,y),κ=p,s)をホログラム面においてそれぞれ生成する光波再生部と、
前記p偏光とs偏光の光波ホログラム(gκ(x,y),κ=p,s)の各々を平面波展開してp偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)をそれぞれ生成する物体光平面波展開部と、
前記照明光(Q)の既知の情報を用いて、前記ホログラム面において、前記照明光(Q)のp偏光の照明光空間周波数スペクトル(Sp(u,v))に対するs偏光の照明光空間周波数スペクトル(Ss(u,v))の比である照明光偏光係数(ξQ=Ss(u,v)/Sp(u,v))を生成する偏光係数生成部と、
前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)と前記照明光偏光係数(ξQ)とを用いて、空間周波数(u,v)毎にs偏光の振幅反射係数(rs=Gs(u,v)/Ss(u,v))に対するp偏光の振幅反射係数(rp=Gp(u,v)/Sp(u,v))の比である振幅反射係数比(ρ=rp/rs=ξQGp(u,v)/Gs(u,v))を算出する演算部と、を備える、ことを特徴とするエリプソメトリ装置。

【請求項2】
 
前記データ取得部は、
レーザが放射するコヒーレント光から球面波状の前記照明光(Q)と、球面波状の前記オフアクシス参照光(R)と、前記インライン球面波参照光(L)と、を生成して伝搬させる光学系と、
光強度を電気信号に変換して出力する受光素子と、
前記物体光(O)と前記オフアクシス参照光(R)との干渉縞のオフアクシスホログラムである前記物体光ホログラム(IOR)、および前記インライン球面波参照光(L)と前記オフアクシス参照光(R)との干渉縞のオフアクシスホログラムである前記参照光ホログラム(ILR)を、前記受光素子を用いて取得して保存する保存部と、
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)の各々が、p偏光のホログラムとs偏光のホログラムとに分離可能なホログラムとして取得されて前記保存部に保存されるように、前記レーザから前記受光素子に至る光路上に、前記光路を伝搬する光の偏光状態を設定する偏光設定器と、を備え、
前記データ解析部は、
前記物体光ホログラム(IOR)から偏光毎に分離してなるp偏光とs偏光の物体光ホログラム(IκOR,κ=p,s)をそれぞれ生成し、前記参照光ホログラム(ILR)から偏光毎に分離してなるp偏光とs偏光の参照光ホログラム(IκLR,κ=p,s))をそれぞれ生成する偏光分離部と、
前記p偏光とs偏光の物体光ホログラム(IκOR,κ=p,s)と前記p偏光とs偏光の参照光ホログラム(IκLR,κ=p,s)とから、前記オフアクシス参照光(R)の成分を除去したp偏光とs偏光の物体光複素振幅インラインホログラム(JκOL,κ=p,s)を生成するインライン化部と、を備え、
前記光波再生部は、前記偏光分離部と前記インライン化部とによって生成された前記p偏光とs偏光の物体光複素振幅インラインホログラム(JκOL,κ=p,s)から前記インライン球面波参照光(L)の成分をその球面波光としての特性を用いることによって除去して、前記光波ホログラム(gκ(x,y),κ=p,s)を生成する、ことを特徴とする請求項1に記載のエリプソメトリ装置。

【請求項3】
 
前記偏光設定器は、前記オフアクシス参照光(R)を互いにオフアクシスとなるp偏光のオフアクシス参照光(Rp)と、s偏光のオフアクシス参照光(Rs)とに分割する参照光分割部を備え、
前記データ取得部は、前記参照光分割部によって分割された前記p偏光とs偏光のオフアクシス参照光(Rκ,κ=p,s)を互いに重ねて用いて、前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)とを、それぞれp偏光のホログラムとs偏光のホログラムとに分離可能なホログラムとして取得する、ことを特徴とする請求項2に記載のエリプソメトリ装置。

【請求項4】
 
前記参照光分割部は、ウォラストンプリズムを用いて前記オフアクシス参照光(R)をp偏光とs偏光とに分割することを特徴とする請求項3に記載のエリプソメトリ装置。

【請求項5】
 
前記受光素子は、CCDであり、
前記偏光設定器は、前記受光素子が受光する光の偏光状態を前記CCDの画素毎に設定する偏光子アレイを備えていることを特徴とする請求項2に記載のエリプソメトリ装置。

【請求項6】
 
物体から放射される光の偏光解析に用いるエリプソメトリ方法であって、
p偏光とs偏光とを含み偏光状態が既知の非平行の光である照明光(Q)によって照明された物体から放射される物体光(O)のデータをオフアクシス参照光(R)を用いて、p偏光のホログラムとs偏光のホログラムとに分離可能に、物体光ホログラム(IOR)として取得し、前記オフアクシス参照光(R)のデータをインライン球面波参照光(L)を用いて、p偏光のホログラムとs偏光のホログラムとに分離可能に、参照光ホログラム(ILR)として取得し、
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)のデータを用いて前記物体光(O)のp偏光の光波とs偏光の光波のそれぞれを表す光波ホログラム(gκ(x,y),κ=p,s)をホログラム面においてそれぞれ生成し、
前記p偏光とs偏光の光波ホログラム(gκ(x,y),κ=p,s)の各々を平面波展開してp偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)をそれぞれ生成し、
前記照明光(Q)の既知の情報を用いて、前記ホログラム面において、前記照明光(Q)のp偏光の照明光空間周波数スペクトル(Sp(u,v))に対するs偏光の照明光空間周波数スペクトル(Ss(u,v))の比である照明光偏光係数(ξQ=Ss(u,v)/Sp(u,v))を生成し、
前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)と前記照明光偏光係数(ξQ)とを用いて、空間周波数(u,v)毎にs偏光の振幅反射係数(rs=Gs(u,v)/Ss(u,v))に対するp偏光の振幅反射係数(rp=Gp(u,v)/Sp(u,v))の比である振幅反射係数比(ρ=rp/rs=ξQGp(u,v)/Gs(u,v))を算出することを特徴とするエリプソメトリ方法。

【請求項7】
 
レーザが放射するコヒーレント光から球面波状の前記照明光(Q)と、球面波状の前記オフアクシス参照光(R)と、前記インライン球面波参照光(L)と、を生成して伝搬させ、
前記物体光(O)と前記オフアクシス参照光(R)との干渉縞のオフアクシスホログラムである前記物体光ホログラム(IOR)、および前記インライン球面波参照光(L)と前記オフアクシス参照光(R)との干渉縞のオフアクシスホログラムである前記参照光ホログラム(ILR)を、取得して保存し、
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)の各々から、偏光毎に分離してなるp偏光とs偏光の物体光ホログラム(IκOR,κ=p,s)およびp偏光とs偏光の参照光ホログラム(IκLR,κ=p,s)とを生成し、
前記p偏光とs偏光の物体光ホログラム(IκOR,κ=p,s)と前記p偏光とs偏光の参照光ホログラム(IκLR,κ=p,s)とから、前記オフアクシス参照光(R)の成分を除去したp偏光とs偏光の物体光複素振幅インラインホログラム(JκOL,κ=p,s)を生成し、
前記p偏光とs偏光の物体光複素振幅インラインホログラム(JκOL,κ=p,s)から前記インライン球面波参照光(L)の成分をその球面波光としての特性を用いることによって除去して、前記光波ホログラム(gκ(x,y),κ=p,s)を生成する、ことを特徴とする請求項6に記載のエリプソメトリ方法。

【請求項8】
 
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)の取得は、前記球面波状のオフアクシス参照光(R)を、互いにオフアクシスと成るp偏光のオフアクシス参照光(Rp)とs偏光のオフアクシス参照光(Rs)とに分割し、前記分割された前記p偏光とs偏光のオフアクシス参照光(Rκ,κ=p,s)を互いに重ねて用いて行われ、
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)のそれぞれの前記p偏光のホログラムとs偏光のホログラムへの分離は、前記p偏光とs偏光のオフアクシス参照光(Rκ,κ=p,s)が互いにオフアクシスであることに基づくフィルタリングによって行われる、ことを特徴とする請求項7に記載のエリプソメトリ方法。

【請求項9】
 
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)の取得は、受光素子であるCCDを用いて行われ、前記受光素子はp偏光用の偏光子とs偏光用の偏光子とを前記CCDの画素毎に交互に配置して備えており、
前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)のそれぞれの前記p偏光のホログラムとs偏光のホログラムへの分離は、前記CCDの画素毎のデータをp偏光のデータとs偏光のデータに分離して行われる、ことを特徴とする請求項7に記載のエリプソメトリ方法。

【請求項10】
 
異なる波長の複数のコヒーレント光を重ねて用いて前記物体光ホログラム(IOR)と前記参照光ホログラム(ILR)とを取得し、
前記異なる波長毎に前記振幅反射係数比(ρ=rp/rs)を算出する、ことを特徴とする請求項6乃至請求項9のいずれか一項に記載のエリプソメトリ方法。

【請求項11】
 
前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)と、前記p偏光とs偏光の照明光空間周波数スペクトル(Sκ(u,v),κ=p,s)とを、座標回転変換によってそれぞれ前記物体の表面に平行な面における表現に変換して前記振幅反射係数比(ρ=rp/rs)を算出する、ことを特徴とする請求項6乃至請求項10のいずれか一項に記載のエリプソメトリ方法。

【請求項12】
 
前記照明光(Q)として球面波光を用いて前記物体光ホログラム(IOR)を取得し、
偏光に対する反射特性が既知である反射鏡を用いて前記球面波光とした照明光(Q)をホログラム面に向けて反射させることにより、前記照明光(Q)を前記インライン球面波参照光(L)として用いて、前記参照光ホログラム(ILR)を取得する、ことを特徴とする請求項7乃至請求項12のいずれか一項に記載のエリプソメトリ方法。

【請求項13】
 
前記物体光ホログラム(IOR)の取得は、前記物体の表面における前記照明光(Q)による照射スポットのサイズを顕微観察のためのサイズに設定して行い、
前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)を生成する処理は、
前記p偏光とs偏光の光波ホログラム(gκ(x,y),κ=p,s)の各々について、空間サンプリング間隔を細分化し、細分化によって生じた新たなサンプリング点に対してデータ補間して、実質的にサンプリング点数を増大させ、
前記サンプリング点数を増大させたp偏光とs偏光の光波ホログラムを、それぞれ複数枚の微小ホログラム(gκi(x,y),κ=p,s)に分割し、
前記分割によって生じた前記微小ホログラム(gκi(x,y),κ=p,s)をp偏光とs偏光のそれぞれについて互いに重ね合わせてp偏光とs偏光の合成微小ホログラム(Σκ(x,y),κ=p,s)を生成し、
前記p偏光とs偏光の合成微小ホログラム(Σκ(x,y),κ=p,s)の各々を平面波展開して前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)をそれぞれ生成する、処理を備え、
平面波の分散関係を満たす空間周波数(u,v,w)と前記サンプリング点数の増大を経て生成された前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)とを用いて、前記物体光(O)の光軸と前記物体の表面とが交わる位置における前記物体光(O)のp偏光とs偏光の再生光波(hκ(x,y),κ=p,s)を生成し、
前記p偏光とs偏光の再生光波(hκ(x,y),κ=p,s)を座標回転変換によってそれぞれ前記物体の表面に平行な面における表現に変換して成るp偏光とs偏光の回転再生光波(bκ(x’,y’),κ=p,s)を生成し、
前記照明光偏光係数(ξQ)と前記p偏光とs偏光の回転再生光波(bκ(x’,y’),κ=p,s)とを用いて、前記照射スポットの各点(x’,y’)における振幅反射係数比(ρ=ξQbp(x’,y’)/bs(x’,y’))、または、前記物体の表面における顕微観察のための画像(|bκ2,κ=p,s)を算出する、ことを特徴とする請求項6に記載のエリプソメトリ方法。

【請求項14】
 
前記物体の表面と前記ホログラム面との成す角度(α)を取得し、
前記照明光(Q)が前記物体のブリュースタ角(θB)を入射角として含む状態で前記物体を照明して前記物体光ホログラム(IOR)を取得し、
前記物体の表面と前記ホログラム面との成す前記角度(α)を用いて、前記p偏光とs偏光の物体光空間周波数スペクトル(Gκ(u,v),κ=p,s)と、前記p偏光とs偏光の照明光空間周波数スペクトル(Sκ(u,v),κ=p,s)とを、座標回転変換によってそれぞれ前記物体の表面に平行な面における表現に変換して前記振幅反射係数比(ρ)を算出し、
前記振幅反射係数比(ρ)から偏光解析用のエリプソメトリ角(Ψ,Δ)を前記照明光(Q)に含まれる複数の入射角(θ)について取得し、
前記入射角(θ)を変数とし前記照明光(Q)を反射する前記物体の屈折率(n)をパラメータとするモデル曲線によって前記エリプソメトリ角(Ψ,Δ)をフィッティングすることにより、前記屈折率(n)の値を得る、ことを特徴とする請求項6に記載のエリプソメトリ方法。

【請求項15】
 
前記物体光ホログラム(IOR)の取得は、前記照明光(Q)を球面波状とし、前記物体の表面における複数の測定点を包含する広い面を、前記照明光(Q)の集光点の手前または後方において照明して行い、
前記振幅反射係数比(ρ)の算出は、前記複数の測定点の各点について行う、ことを特徴とする請求項6に記載のエリプソメトリ方法。

【請求項16】
 
前記物体光ホログラム(IOR)の取得は、前記照明光(Q)を球面波状とし、前記物体の表面の位置に前記照明光(Q)の集光点を配置して行う、ことを特徴とする請求項6に記載のエリプソメトリ方法。
IPC(International Patent Classification)
F-term
Drawing

※Click image to enlarge.

JP2018535670thum.jpg
State of application right Published
(In Japanese)FAX又はEメールでお問い合わせください。


PAGE TOP

close
close
close
close
close
close
close