Top > Search Research paper > (In Japanese)時間的情報処理の神経基盤のモデル化

(In Japanese)時間的情報処理の神経基盤のモデル化

Research report code R013000246
Posted date Oct 1, 2003
  • (In Japanese)深井 朋樹
  • (In Japanese)玉川大学工学部
Research organization
  • (In Japanese)玉川大学工学部
Report name (In Japanese)時間的情報処理の神経基盤のモデル化
Technology summary (In Japanese)動物行動を,神経回路における動的情報処理という基本レベルで解き明かし,高度で柔軟な脳型情報処理機械を開発することを目的としている。ガンマ周波数帯の神経活動の神経回路レベルでの機能的役割を探るために,Chattering細胞の計算論的モデルを構築した。このモデルは実験で見られるバーストパターンをよく説明し,同期発火による神経集団の選択を実現する。時間を認知する機構を探るため,神経回路の持続発火の保持時間で数秒程度の時間を記憶するモデルを提案した。シナプスの長期増強と長期抑圧は入出力スパイクの時間差に依存するが,その機能的役割の一つとしての神経細胞の活動レベルの自動調節について理論的解析を行い,タイミング規則に適用してその機能的意味を明らかにした。この自動調節がネットワークレベルでは,循環的な神経アッセンブリ構造の自発生成を伴う。これによりワーキングメモリと同期発火アッセンブリという異なる短期記憶構造の間には機能的関連が存在することが示唆される。
Research field
  • Nervous system in general
  • Brain and nervous system models
Published papers related (In Japanese)(1)Fukai T (1999) Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: A model of the basal ganglia-thalamo-cortical loops. Neural Networks 12, 211-216. (Special Issue: Organisation of Computation in Brain-like Systems).   
(2)Fukai T, Kimoto T & Okada M (1999) Coexistence of uncorrelated and correlated attractors in a nonmonotonic neural network. Journal of Physics A: Math. Gen. 32, 5551-5562
(3)Okamoto H & Fukai T (2000) A model for neural representation of temporal duration. BioSystems 55: 59-64. 
(4)Okamoto H & Fukai T (2000) A model for neural representation of intervals of time. Neurocomputing 32-33: 935-939.
(5)Fukai T & Kanemura S (2000) Precisely-timed synchronization by depressing synapses. Neurocomputing 32-33: 133-140.
(6)Fukai T (2000) Neuronal communication within synchronous gamma oscillations. NeuroReport 11: 3457-3460. 
(7)Fukai T (2001) Neuronal analog-digital information transformations at the gamma frequency. Neurocomputing 38-40: 615-619.
(8)Terada N, Aoyagi T, Kang Y, Kaneko T, & Fukai T (2001) A bursting mechanism of chattering neurons based on calcium-dependent cationic currents. Neurocomputing 38-40: 93-98.
(9)Kitano K, Aoyagi T & Fukai T (2001) Synchronous and asynchronous activities in a network of striatal spiny projection neurons. Neurocomputing 38-40 721-726.
(10)Okamoto, H & Fukai, T (2001) On experimental predictions from a model for a neural mechanism of internal timer. Neurocomputing 38-40 1489-1493.
(11)Kitano K, Aoyagi T & Fukai T (2001) A possible functional organization of the corticostriatal input within the weakly-correlated striatal activity : A modeling study. Neuroscience Research 40: 87-96. 
(12)Fukai T & Kanemura S (2001) Noise-tolerant stimulus discrimination by synchronization with depressing synapses. Biological Cybernetics 85: 107-116. 
(13)Cateau H & Fukai T (2001). Fokker-Planck approach to the pulse packet propagation in synfire chain. Neural Networks 14: 675-685. (Special Issue: Spiking Neurons in Neuroscience and Technology). 
(14)Okamoto H & Fukai T (2001) A neural mechanism for cognitive timer. Physical Review Letters 86: 3919-3922. 
(15)Kitano K, Cateau H & Fukai T (2002) Self-Organization of Memory Activity through Spike-Timing- Dependent Plasticity, NeuroReport 13: 795-798. **
(16) Kitano, K, Cateau, H, Kaneda, K, Nambu, A, Takada, M, & Fukai, T (2002) Two-State Membrane Potential Transitions of Striatal Spiny Neurons as Evidenced by Numerical Simulations and Electrophysiological Recordings in Awake Monkeys. The Journal of Neuroscience 22: RC230: 1-6. 
(17)Kitano K, Cateau H, Fukai T (2002) Sustained activity with low firing rate in a recurrent network regulated by spike-timing-dependent plasticity. Neurocomputing 44-46: 473-478.
(18)Fukai T, Kitano K, Aoyagi T, Kang Y (2002) Modeling the layer V cortical pyramidal neurons showing theta-rhythmic firing in the presence of muscarine. Neurocomputing 44-46: 103-108.
(19)Cateau H, Kitano K, Fukai T (2002) An accurate and widely applicable method to determine the distribution of synaptic strength formed by the spike-timing-dependent plasticity. Neurocomputing 44-46: 343-351.
(20)Aoyagi T, Kang Y, Terada N, Kaneko T, Fukai T (2002) The role of Ca(2+)-dependent cationic current in generating gamma frequency rhythmic bursts: modeling study. Neuroscience 115(4): 1127-1138. 
(21)Okamoto H, Fukai T (in press) Physiological modeling of a possible neural mechanism for cognitive timer. Neurocomputing.
(22)Cateau H & Fukai T (in press). A stochastic method to predict the consequence of arbitrary forms of spike-timing-dependent plasticity. Neural Computation 15 (3) : 597-620. 
(23)Aoyagi T, Takekawa T & Fukai T (in press) Gamma rhythmic bursts: coherence control in networks of cortical pyramidal neurons. Neural Computation 
(24)Fukai T, Kitano K & Okamoto H (in press) Time representation in the cortex: two models inspired by prefrontal persistent activity, synfire chain and unitary events. Biological Cebernetics 
(25)Nomura M, Fukai T, & Aoyagi T (in press) Synchrony of fast-spiking interneurons interconnected by GABAergic and electrical synapses. Neural Computation.
Research project
  • Core Research for Evolutional Science and Technology;Creating the Brain
Information research report
  • (In Japanese)深井 朋樹. 時間的情報処理の神経基盤のモデル化. 戦略的基礎研究推進事業「脳を創る」第2回公開シンポジウム予稿集,2001. p.9 - 10.